BR-GAN: Bilateral Residual Generating Adversarial Network for Mammogram Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12262))

  • 8312 Accesses

Abstract

Mammogram malignancy classification with only image-level annotations is challenging due to a lack of lesion annotations. If we can generate the healthy version of the diseased data, we can easily explore the lesion features. An intuitive idea of such generation is to use existing Cycle-GAN based methods. They achieve the healthy generation regarding healthy images as reference domain, while maintaining the original content by cycle consistency mechanism. However, healthy mammogram patterns are diverse which may lead to uncertain generations. Moreover, the back translation from healthy to the original remains an ill-posed problem due to lack of lesion information. To address these problems, we propose a novel model called bilateral residual generating adversarial network(BR-GAN). We use the Cycle-GAN as a basic framework while regarding the contralateral as generation reference based on the bilateral symmetry prior. To address the ill-posed back translation problem, we propose a residual-preserved mechanism to try to preserve the lesion features from the original features. The generated features and the original features are aggregated for further classification. BR-GAN outperforms current state-of-the-art methods on INBreast and in-house datasets.

C. Wang—This work was done when Chu-ran Wang was an intern at Deepwise AI Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dhungel, N., Carneiro, G., Bradley, A.P.: The automated learning of deep features for breast mass classification from mammograms. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 106–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_13

    Chapter  Google Scholar 

  2. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: learning of attention mechanism for visual explanation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10705–10714 (2019)

    Google Scholar 

  3. Haarburger, C., et al.: Multiparametric magnetic resonance image synthesis using generative adversarial networks. In: VCBM (2019)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Hu, X., Jiang, Y., Fu, C.W., Heng, P.A.: Mask-ShadowGAN: learning to remove shadows from unpaired data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2472–2481 (2019)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  7. Li, H., Chen, D., Nailon, W.H., Davies, M.E., Laurenson, D.: A deep dual-path network for improved mammogram image processing. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1224–1228. IEEE (2019). https://doi.org/10.1109/ICASSP.2019.8682496

  8. Lotter, W., Sorensen, G., Cox, D.: A multi-scale CNN and curriculum learning strategy for mammogram classification. In: Carneiro, G., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 169–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_20

    Chapter  Google Scholar 

  9. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012). https://doi.org/10.1016/j.acra.2011.09.014

    Article  Google Scholar 

  10. Nizan, O., Tal, A.: Breaking the cycle-colleagues are all you need. ar**v preprint ar**v:1911.10538 (2019)

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  12. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 4165 (2018). https://doi.org/10.1038/s41598-018-22437-z

    Article  Google Scholar 

  13. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  14. Siddiquee, M.M.R., et al.: Learning fixed points in generative adversarial networks: from image-to-image translation to disease detection and localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 191–200 (2019)

    Google Scholar 

  15. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 69(1), 7–34 (2019). https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  16. Tai, S.C., Chen, Z.S., Tsai, W.T.: An automatic mass detection system in mammograms based on complex texture features. IEEE J. Biomed. Health Inf. 18(2), 618–627 (2013). https://doi.org/10.1109/JBHI.2013.2279097

    Article  Google Scholar 

  17. Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_11

    Chapter  Google Scholar 

  18. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  19. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  20. Zhu, W., Lou, Q., Vang, Y.S., **e, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by MOST-2018AAA0102004, NSFC-61625201 and ZheJiang Province Key Research & Development Program (No. 2020C03073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fandong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Cr., Zhang, F., Yu, Y., Wang, Y. (2020). BR-GAN: Bilateral Residual Generating Adversarial Network for Mammogram Classification. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12262. Springer, Cham. https://doi.org/10.1007/978-3-030-59713-9_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59713-9_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59712-2

  • Online ISBN: 978-3-030-59713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation