Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity, Errors and Jumbled-Index Queries in String Reconstruction

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2020)

Abstract

We study the query complexity of exactly reconstructing a string from adaptive queries, such as substring, subsequence, and jumbled-index queries. Such problems have applications, e.g., in computational biology. We provide a number of new and improved bounds for exact string reconstruction for settings where either the string or the queries are “mixed-up”.

The full version of this paper is available in [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our algorithms assume that S is periodic (\(k>1\)), while the Periodicity Lemma (1) only requires a string to have a period (\(k>0\)).

  2. 2.

    A more sophisticated version of this procedure exists (see [17]) that actually improves the constant in the time complexity, but for simplicity, we use the traditional algorithm, which is asymptotically equivalent.

  3. 3.

    Pseudo-code can be found in the full version of the paper [5], where the number of queries is also shown for each step involving queries.

  4. 4.

    Pseudo-code can be found in the full version of the paper [5], where the number of queries is also shown for each step involving queries.

  5. 5.

    Pseudo-code can be found in the full version of the paper [5], where the number of queries is also shown for each step involving queries.

References

  1. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: Quadratic-backtracking algorithm for string reconstruction from substring compositions. In: 2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014, pp. 1296–1300. IEEE (2014). https://doi.org/10.1109/ISIT.2014.6875042

  2. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: String reconstruction from substring compositions. SIAM J. Discrete Math. 29(3), 1340–1371 (2015). https://doi.org/10.1137/140962486

    Article  MathSciNet  MATH  Google Scholar 

  3. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The query complexity of finding a hidden permutation. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 1–11. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40273-9_1

    Chapter  Google Scholar 

  4. Afshani, P., van Duijn, I., Killmann, R., Nielsen, J.S.: A lower bound for jumbled indexing. In: 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 592–606 (2020). https://doi.org/10.1137/1.9781611975994.36

  5. Afshar, R., Amir, A., Goodrich, M.T., Matias, P.: Adaptive exact learning in a mixed-up world: dealing with periodicity errors, and jumbled-index queries in string reconstruction. ar**v preprint ar**v:2007.08787 (2029). https://arxiv.org/abs/2007.08787

  6. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and correction. ACM Trans. Alg. 9(1) (2012). Article no. 13

    Google Scholar 

  7. Amir, A., Apostolico, A., Hirst, T., Landau, G.M., Lewenstein, N., Rozenberg, L.: Algorithms for jumbled indexing, jumbled border and jumbled square on run-length encoded strings. Theor. Comput. Sci. 656, 146–159 (2016). https://doi.org/10.1016/j.tcs.2016.04.030. http://www.sciencedirect.com/science/article/pii/S030439751630069X

    Article  MathSciNet  MATH  Google Scholar 

  8. Amir, A., et al.: Pattern matching with address errors: rearrangement distances. J. Comput. Syst. Sci. 75(6), 359–370 (2009). https://doi.org/10.1016/j.jcss.2009.03.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Amir, A., Butman, A., Porat, E.: On the relationship between histogram indexing and block-mass indexing. Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci. 372(2016) (2014). https://doi.org/10.1098/rsta.2013.0132. https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132

  10. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_10

    Chapter  Google Scholar 

  11. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange rearrangement in strings. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 99–110. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_11

    Chapter  Google Scholar 

  12. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988). https://doi.org/10.1023/A:1022821128753

    Article  MathSciNet  Google Scholar 

  13. Arratia, R., Martin, D., Reinert, G., Waterman, M.S.: Poisson process approximation for sequence repeats and sequencing by hybridization. J. Comput. Biol. 3(3), 425–463 (1996). https://doi.org/10.1089/cmb.1996.3.425

    Article  Google Scholar 

  14. Batu, T., Kannan, S., Khanna, S., McGregor, A.: Reconstructing strings from random traces. In: Munro, J.I. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January 2004, pp. 910–918. SIAM (2004). http://dl.acm.org/citation.cfm?id=982792.982929

  15. Benson, G.: Tandem repeats finder: a program to analyze DNA sequence. Nucleic Acids Res. 27(2), 573–580 (1999)

    Article  Google Scholar 

  16. Benson, G., Waterman, M.: A method for fast database search for all k-nucleotide repeats. Nucleic Acids Res. 22, 4828–4836 (1994)

    Article  Google Scholar 

  17. Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded searching. Inf. Process. Lett. 5(3), 82–87 (1976). https://doi.org/10.1016/0020-0190(76)90071-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Bernasconi, A., Damm, C., Shparlinski, I.: Circuit and decision tree complexity of some number theoretic problems. Inf. Comput. 168(2), 113–124 (2001). https://doi.org/10.1006/inco.2000.3017. http://www.sciencedirect.com/science/article/pii/S0890540100930177

    Article  MathSciNet  MATH  Google Scholar 

  19. Bresler, G., Bresler, M., Tse, D.: Optimal assembly for high throughput shotgun sequencing. BMC Bioinform. 14(2013). Article number. S18. https://doi.org/10.1186/1471-2105-14-S5-S18

  20. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012). https://doi.org/10.1142/S0129054112400175

    Article  MathSciNet  MATH  Google Scholar 

  21. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf. Process. Lett. 92(6), 293–297 (2004). https://doi.org/10.1016/j.ipl.2004.09.002

    Article  MathSciNet  MATH  Google Scholar 

  22. Carpi, A., de Luca, A.: Words and special factors. Theor. Comput. Sci. 259(1–2), 145–182 (2001). https://doi.org/10.1016/S0304-3975(99)00334-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Cayley, A.: LXXVII. Note on the theory of permutations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(232), 527–529 (1849)

    Article  Google Scholar 

  24. Chang, Z., Chrisnata, J., Ezerman, M.F., Kiah, H.M.: Rates of DNA sequence profiles for practical values of read lengths. IEEE Trans. Inf. Theory 63(11), 7166–7177 (2017). https://doi.org/10.1109/TIT.2017.2747557

    Article  MathSciNet  MATH  Google Scholar 

  25. Choi, S.S., Kim, J.H.: Optimal query complexity bounds for finding graphs. Artif. Intell. 174(9), 551–569 (2010). https://doi.org/10.1016/j.artint.2010.02.003. http://www.sciencedirect.com/science/article/pii/S0004370210000251

    Article  MathSciNet  MATH  Google Scholar 

  26. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference 2009, Prague, Czech Republic, 31 August–2 September 2009, pp. 105–117. Prague Stringology Club, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague (2009). http://www.stringology.org/event/2009/p10.html

  27. Cieplinski, L.: MPEG-7 color descriptors and their applications. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 11–20. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44692-3_3

    Chapter  MATH  Google Scholar 

  28. Cleve, R., et al.: Reconstructing strings from substrings with quantum queries. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 388–397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0_34

    Chapter  Google Scholar 

  29. Dakic, T.: On the turnpike problem. Simon Fraser University BC, Canada (2000)

    Google Scholar 

  30. Deininger, P.: SINEs: short interspersed repeated DNA elements in higher eukaryotes. In: Berg, D., Howe, M. (eds.) Mobile DNA, Chap. 27, pp. 619–636. American Society for Microbiology (1989)

    Google Scholar 

  31. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf. Retrieval 11(2), 77–107 (2008). https://doi.org/10.1007/s10791-007-9039-3

    Article  Google Scholar 

  32. Dobzinski, S., Vondrak, J.: From query complexity to computational complexity. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 1107–1116. ACM, New York (2012). https://doi.org/10.1145/2213977.2214076

  33. Domaniç, N.O., Preparata, F.P.: A novel approach to the detection of genomic approximate tandem repeats in the levenshtein metric. J. Comput. Biol. 14(7), 873–891 (2007)

    Article  MathSciNet  Google Scholar 

  34. Dudík, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory Ser. A 103(2), 337–348 (2003). https://doi.org/10.1016/S0097-3165(03)00103-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Dudley, J., Lin, M.T., Le, D., Eshleman, J.R.: Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 22(4), 813–820 (2016)

    Article  Google Scholar 

  36. Elishco, O., Gabrys, R., Médard, M., Yaakobi, E.: Repeat-free codes. In: IEEE International Symposium on Information Theory, ISIT 2019, Paris, France, 7–12 July 2019, pp. 932–936. IEEE (2019). https://doi.org/10.1109/ISIT.2019.8849483

  37. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences. J. Comput. Biol. 11(6), 1050–1060 (2004). https://doi.org/10.1089/cmb.2004.11.1050

    Article  Google Scholar 

  38. Fici, G., Mignosi, F., Restivo, A., Sciortino, M.: Word assembly through minimal forbidden words. Theor. Comput. Sci. 359(1–3), 214–230 (2006). https://doi.org/10.1016/j.tcs.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  39. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16(1), 109–114 (1965)

    Article  MathSciNet  Google Scholar 

  40. Gabrys, R., Milenkovic, O.: The hybrid k-Deck problem: reconstructing sequences from short and long traces. In: 2017 IEEE International Symposium on Information Theory, ISIT 2017, Aachen, Germany, 25–30 June 2017, pp. 1306–1310. IEEE (2017). https://doi.org/10.1109/ISIT.2017.8006740

  41. Gabrys, R., Milenkovic, O.: Unique reconstruction of coded sequences from multiset substring spectra. In: 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2540–2544. IEEE (2018). https://doi.org/10.1109/ISIT.2018.8437909

  42. Ganguly, S., Mossel, E., Rácz, M.Z.: Sequence assembly from corrupted shotgun reads. In: IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 265–269. IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541302

  43. Holenstein, T., Mitzenmacher, M., Panigrahy, R., Wieder, U.: Trace reconstruction with constant deletion probability and related results. In: Teng, S. (ed.) Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, 20–22 January 2008, pp. 389–398. SIAM (2008). http://dl.acm.org/citation.cfm?id=1347082.1347125

  44. Iwama, K., Teruyama, J., Tsuyama, S.: Reconstructing strings from substrings: optimal randomized and average-case algorithms (2018)

    Google Scholar 

  45. Jeong, K., Bandeira, N., Kim, S., Pevzner, P.A.: Gapped spectral dictionaries and their applications for database searches of tandem mass spectra. Mol Cell Proteomics (2011). https://doi.org/10.1074/mcp.M110.002220

  46. Jerrum, M.: The complexity of finding minimum-length generator sequences. Theor. Comput. Sci. 36, 265–289 (1985). https://doi.org/10.1016/0304-3975(85)90047-7

    Article  MathSciNet  MATH  Google Scholar 

  47. Kalashnik, L.: The reconstruction of a word from fragments. In: Numerical Mathematics and Computer Technology, pp. 56–57 (1973)

    Google Scholar 

  48. Kannan, S., McGregor, A.: More on reconstructing strings from random traces: insertions and deletions. In: Proceedings of the 2005 IEEE International Symposium on Information Theory, ISIT 2005, Adelaide, South Australia, Australia, 4–9 September 2005, pp. 297–301. IEEE (2005). https://doi.org/10.1109/ISIT.2005.1523342

  49. Kiah, H.M., Puleo, G.J., Milenkovic, O.: Codes for DNA sequence profiles. IEEE Trans. Inf. Theory 62(6), 3125–3146 (2016). https://doi.org/10.1109/TIT.2016.2555321

    Article  MathSciNet  MATH  Google Scholar 

  50. Kim, S., Bandeira, N., Pevzner, P.A.: Spectral profiles: a novel representation of tandem mass spectra and its applications for de novo peptide sequencing and identification. Mol. Cell. Proteomics 8, 1391–1400 (2009)

    Article  Google Scholar 

  51. Kim, S., Gupta, N., Bandeira, N., Pevzner, P.A.: Spectral dictionaries: integrating de novo peptide sequencing with database search of tandem mass spectra. Mol. Cell. Proteomics 8(1), 53–69 (2009)

    Article  Google Scholar 

  52. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_53

    Chapter  Google Scholar 

  53. Kolpakov, R., Kucherov, G.: mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 31, 3672–3678 (2003). http://www.loria.fr/mreps/

    Article  Google Scholar 

  54. Krasikov, I., Roditty, Y.: On a reconstruction problem for sequences. J. Comb. Theory Ser. A 77(2), 344–348 (1997). https://doi.org/10.1006/jcta.1997.2732

    Article  MathSciNet  MATH  Google Scholar 

  55. Levenshtein, V.I.: Binary codes capable of correcting, deletions, insertions and reversals. Soviet Phys. Dokl. 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  56. Levenshtein, V.I.: Efficient reconstruction of sequences. IEEE Trans. Inf. Theory 47(1), 2–22 (2001). https://doi.org/10.1109/18.904499

    Article  MathSciNet  MATH  Google Scholar 

  57. Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction problem. J. ACM 22(2), 177–183 (1975). https://doi.org/10.1145/321879.321880

    Article  MathSciNet  MATH  Google Scholar 

  58. Manvel, B., Meyerowitz, A., Schwenk, A.J., Smith, K., Stockmeyer, P.K.: Reconstruction of sequences. Discrete Math. 94(3), 209–219 (1991). https://doi.org/10.1016/0012-365X(91)90026-X

    Article  MathSciNet  MATH  Google Scholar 

  59. Marcovich, S., Yaakobi, E.: Reconstruction of strings from their substrings spectrum. CoRR abs/1912.11108 (2019). http://arxiv.org/abs/1912.11108

  60. Margaritis, D., Skiena, S.S.: Reconstructing strings from substrings in rounds. In: IEEE 36th Symposium on Foundations of Computer Science (FOCS), pp. 613–620, October 1995. https://doi.org/10.1109/SFCS.1995.492591

  61. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  62. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf. Process. Lett. 110(18), 795–798 (2010). https://doi.org/10.1016/j.ipl.2010.06.012. http://www.sciencedirect.com/science/article/pii/S0020019010002012

    Article  MathSciNet  MATH  Google Scholar 

  63. Motahari, A.S., Bresler, G., Tse, D.N.C.: Information theory of DNA shotgun sequencing. IEEE Trans. Inf. Theory 59(10), 6273–6289 (2013). https://doi.org/10.1109/TIT.2013.2270273

    Article  MathSciNet  MATH  Google Scholar 

  64. Motahari, A.S., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun sequencing: noisy reads are as good as noiseless reads. In: Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013, pp. 1640–1644. IEEE (2013). https://doi.org/10.1109/ISIT.2013.6620505

  65. Parisi, V., Fonzo, V.D., Aluffi-Pentini, F.: STRING: finding tandem repeats in DNA sequences. Bioinformatics 19(14), 1733–1738 (2003)

    Article  Google Scholar 

  66. Pellegrini, M., Renda, M.E., Vecchio, A.: TRStalker: an efficient heuristic for finding fuzzy tandem repeats. Bioinformatics [ISMB] 26(12), 358–366 (2010)

    Article  Google Scholar 

  67. Sala, F., Gabrys, R., Schoeny, C., Mazooji, K., Dolecek, L.: Exact sequence reconstruction for insertion-correcting codes. In: IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 615–619. IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541372

  68. Scott, A.D.: Reconstructing sequences. Discrete Math. 175(1–3), 231–238 (1997). https://doi.org/10.1016/S0012-365X(96)00153-7

    Article  MathSciNet  MATH  Google Scholar 

  69. Shomorony, I., Courtade, T.A., Tse, D.N.C.: Do read errors matter for genome assembly? In: IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, China, 14–19 June 2015, pp. 919–923. IEEE (2015). https://doi.org/10.1109/ISIT.2015.7282589

  70. Shomorony, I., Kamath, G.M., **a, F., Courtade, T.A., Tse, D.N.C.: Partial DNA assembly: a rate-distortion perspective. In: IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 1799–1803. IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541609

  71. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_23

    Chapter  Google Scholar 

  72. Skiena, S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint distances (extended abstract). In: Seidel, R. (ed.) Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, CA, USA, 6–8 June 1990, pp. 332–339. ACM (1990). https://doi.org/10.1145/98524.98598

  73. Skiena, S., Sundaram, G.: Reconstructing strings from substrings. J. Comput. Biol. 2(2), 333–353 (1995). https://doi.org/10.1089/cmb.1995.2.333

    Article  Google Scholar 

  74. Sokol, D.: TRedD - a database for tandem repeats over the edit distance. Database J. Biol. Databases Curation 2010(baq003) (2010). https://doi.org/10.1093/database/baq003

  75. Tan, K., Ooi, B.C., Yee, C.Y.: An evaluation of color-spatial retrieval techniques for large image databases. Multimed. Tools Appl. 14(1), 55–78 (2001). https://doi.org/10.1023/A:1011359607594

    Article  MATH  Google Scholar 

  76. Tardos, G.: Query complexity, or why is it difficult to separate \(NP^A\cap coNP^A\) from \(P^A\) by random oracles \(A\)? Combinatorica 9(4), 385–392 (1989). https://doi.org/10.1007/BF02125350

    Article  MathSciNet  MATH  Google Scholar 

  77. Tsur, D.: Tight bounds for string reconstruction using substring queries. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 448–459. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462_38

    Chapter  Google Scholar 

  78. Ukkonen, E.: Approximate string matching with q-grams and maximal matches. Theor. Comput. Sci. 92(1), 191–211 (1992). https://doi.org/10.1016/0304-3975(92)90143-4

    Article  MathSciNet  MATH  Google Scholar 

  79. Viswanathan, K., Swaminathan, R.: Improved string reconstruction over insertion-deletion channels. In: Teng, S. (ed.) Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, 20–22 January 2008, pp. 399–408. SIAM (2008). http://dl.acm.org/citation.cfm?id=1347082.1347126

  80. Wagner, R.A.: On the complexity of the extended string-to-string correction problem. In: Rounds, W.C., Martin, N., Carlyle, J.W., Harrison, M.A. (eds.) Proceedings of the 7th Annual ACM Symposium on Theory of Computing, Albuquerque, New Mexico, USA, 5–7 May 1975, pp. 218–223. ACM (1975). https://doi.org/10.1145/800116.803771

  81. Wang, J., Hua, X.: Interactive image search by color map. ACM Trans. Intell. Syst. Technol. 3(1), 12:1–12:23 (2011)

    Article  Google Scholar 

  82. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate tandem repeats in genomic sequences. In: RECOMB, pp. 223–232 (2004)

    Google Scholar 

  83. Yao, A.C.C.: Decision tree complexity and Betti numbers. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 615–624. ACM, New York (1994). https://doi.org/10.1145/195058.195414

  84. Zenkin, A., Leont’ev, V.K.: On a non-classical recognition problem. USSR Comput. Math. Math. Phys. 24(3), 189–193 (1984)

    Article  Google Scholar 

  85. Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a literature survey. CoRR abs/1706.06064 (2017). http://arxiv.org/abs/1706.06064

Download references

Acknowledgments

This research was funded in part by the U.S. National Science Foundation under grant 1815073. Amihood Amir was partly supported by BSF grant 2018141 and ISF grant 1475-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Matias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afshar, R., Amir, A., Goodrich, M.T., Matias, P. (2020). Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity, Errors and Jumbled-Index Queries in String Reconstruction. In: Boucher, C., Thankachan, S.V. (eds) String Processing and Information Retrieval. SPIRE 2020. Lecture Notes in Computer Science(), vol 12303. Springer, Cham. https://doi.org/10.1007/978-3-030-59212-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59212-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59211-0

  • Online ISBN: 978-3-030-59212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation