Biogas Technology for Animal Manure Management in the USA: State of the Art, Opportunities, Challenges, and Perspectives

  • Chapter
  • First Online:
Biogas Production
  • 1172 Accesses

Abstract

Anaerobic digestion is an established technology for treating organic wastes and producing renewable energy as biogas. This technology is well suited for US livestock operations which have been moving toward increasingly larger facilities with large quantities of manure. However, out of an estimated 8000 plus dairy and swine farms that could use AD, there are currently only 248 operational farm digesters in the USA. The environmental problems associated with livestock manures are summarized, and the benefits of AD to alleviate the problems are discussed. Increasing the versatility of products derived from farm-based AD may make biogas technology more attractive. Some of these products could be enhanced methane production through power-to-gas (PtG) technology, combined cooling, heat and power (CCHP), bio-crude oil, and the enhanced production of medium-chain fatty acids with modified AD microbiomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnology 29:70–78

    Article  CAS  Google Scholar 

  • AgSTAR, Environmental Protection Agency (2019) Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities. EPA-430-R-18-006

    Google Scholar 

  • Angenent LT, Usack JG, Xu J, Hafenbradl D, Posmanik R, Tester JW (2018) Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresour Technol 247:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Ashekuzzaman SM, Poulsen TG (2011) Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresour Technol 102:2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Astals S, Nolla-Ardevol V, Mata-Alvarez J (2012) Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol 110:63–70

    Article  CAS  PubMed  Google Scholar 

  • Bishop CP, Shumway CR (2009) The economics of dairy anaerobic digestion with coproduct marketing. Rev Agric Econ 31(3):394–410

    Article  Google Scholar 

  • Bombardiere J, Espinosa-Solares T, Domaschko M, Chatfield M (2007) Thermophilic anaerobic digester performance under different feed-loading frequency. App Biochem Biotechnol 137-140:765–775

    Article  CAS  Google Scholar 

  • Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397

    Article  CAS  PubMed  Google Scholar 

  • Castrillon L, Maranon E, Fernandez-Nava Y, Ormaechea P, Quiroga G (2013) Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR). Bioresour Technol 136:73–77

    Article  CAS  PubMed  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic resistance residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    Article  CAS  PubMed  Google Scholar 

  • Comino E, Riggio VA, Rosso M (2012) Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol 114:46–53

    Article  CAS  PubMed  Google Scholar 

  • Cowley C, Brorsen BW (2018) The hurdles to greater adoption of anaerobic digesters. Agricultural and Resource Economics Review 47(1):132–157

    Article  Google Scholar 

  • DeVuyst EA, Pryor SW, Lardy G, Eide W, Wiederholt R (2011) Cattle, ethanol, and biogas: does closing the loop make economic sense? Agric Syst 104:609–614

    Article  Google Scholar 

  • Espinosa-Solares T, Valle-Guadarrama S, Bombardiere J, Domaschko M, Easter M (2009) Effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester. App. Biochem. Biotechnol. 156:35–44

    Article  CAS  Google Scholar 

  • Feng L, Casas ME, Ottosen LDM, Moller HB, Bester K (2017) Removal of antibiotics during the anaerobic digestion of pig manure. Sci Total Environ 603-604:219–225

    Article  CAS  PubMed  Google Scholar 

  • GÓ§tz M, Lefebvre J, MÓ§rs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  CAS  Google Scholar 

  • Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Wiley, Blackwell

    Book  Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258

    Article  CAS  PubMed  Google Scholar 

  • Lantz M (2012) The economic performance of combined heat and power from biogas produced from manure in Sweden – a comparison of different CHP technologies. Appl Energy 98:502–511

    Article  Google Scholar 

  • MacDonald JM, McBride WD (2009) The transformation of U.S. livestock agriculture: scale, efficiency, and risks. United States Department of Agriculture, Electronic Information Bulletin Number 43

    Google Scholar 

  • Marti R, Scott A, Tien YC, Murray R, Sabourin L, Zhang Y, Topp E (2013) Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl Environ Microbiol 79:5701–5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meneses-Reyes JC, Hernández-Eugenio G, Huber DH, Balagurusamy N, Espinosa-Solares T (2018) Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter. Renew Energy 128:223–229

    Article  CAS  Google Scholar 

  • NBB (2014) National Biodiesel Board. http://nbb.org

  • Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205

    Article  CAS  PubMed  Google Scholar 

  • Perera R, Perera P, Vlosky RP, Darby P (2010) Potential of using poultry litter as a feedstock for energy production. Louisiana State University Forest Products Development Center

    Google Scholar 

  • Pitk P, Palatsi J, Kaparaju P, Fernandez B, Vilu R (2014) Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation. Bioresour Technol 166:168–177

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Vitousel PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Robertson GP, Gross KL, Hamilton SK, Landis DA, Schmidt TM, Snapp SS, Swinton SM (2014) Farming for ecosystem services: an ecological approach to production agriculture. Bioscience 64:404–415

    Article  Google Scholar 

  • Sakar S, Kaan Y, Kocak E (2009) Anaerobic digestion technology in poultry and livestock waste treatment: a literature review. Waste Management Res 27:3–18

    Article  CAS  Google Scholar 

  • Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Espinosa-Solares T, Huber DH (2013) Thermophilic anaerobic co-digestion of poultry litter and thin stillage. Bioresour Technol 136:251–256

    Article  CAS  PubMed  Google Scholar 

  • Silbergeld EK, Graham J, Price LB (2008) Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 29:151–169

    Article  Google Scholar 

  • Sommer SG, Christensen ML, Schmidt T, Jensen LS (2013) Animal manure recycling: treatment and management. Wiley

    Google Scholar 

  • Spirit CM, Daly SE, Werner JJ, Angenent LT (2018) Redundancy in anaerobic digestion microbiomes during disturbances by the antibiotic monensin. Appl Environ Microbiol 84(9):e02692–e02617

    Google Scholar 

  • Stokes JR, Rajagopalan RM, Stefanou SE (2008) Investment in a methane digester: an application of capital budgeting and real options. Rev Agric Econ 30:664–676

    Article  Google Scholar 

  • Szogi AA, Vanotti MB, Ro KS (2015) Methods for treatment of animal manures to reduce nutrient pollution prior to soil application. Curr Pollution Rep 1:47–56

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Turker G, Akyol C, Ince O, Aydin S, Ince B (2018) Operating conditions influence microbial community structures, elimination of the antibiotic resistance genes and metabolites during anaerobic digestion of cow manure in the presence of oxytetracycline. Ecotoxicol Environ Saf 147:349–356

    Article  CAS  PubMed  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci 111(42):15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Environmental Protection Agency (2019a) EPA 430-R-19-001. Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2017

    Google Scholar 

  • US Environmental Protection Agency (2019b) EPA 430-R-18-006. June 2018. Market opportunities for biogas recovery Systems at U.S. Livestock Facilities

    Google Scholar 

  • USDA-NRCS (2012a) Agricultural Waste Management Field Handbook, vol 2012. USDA, Washington DC

    Google Scholar 

  • USDA-NRCS (2012b) Introduction to waterborne pathogens in agricultural watersheds. Nutrient management technical note no. 9. USDA, Washington DC

    Google Scholar 

  • USDA ERS (2017) Major uses of land in the United States [data file]

    Google Scholar 

  • USDA (2017) Census of agriculture

    Google Scholar 

  • van den Bogaard AE, Willems R, London N, Top J, Stobberingh EE (2002) Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemotherapy 49:497–505

    Article  Google Scholar 

  • Wang SJ, Fox DG, Cherney DJR, Klausner SD, Bouldin DR (1999) Impact of dairy farming on well water nitrate levels and soil content of phosphorus and potassium. J Dairy Sci 82:2164–2169

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Z, Bai X, Zhou X, Cheng S, Gao R, Sun J (2018) Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: methane production and microbial community in CSTR process. Bioresour Technol 249:290–297

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Article  CAS  PubMed  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  • Westerholm M, Hansson M, Schnurer (2012) Improved biogas production from whole stillage by co-digestion with cattle manure. Bioresour Technol 114:314-319

    Google Scholar 

  • Zhang C, **ao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank USDA NIFA for several years of grant funding that has supported our anaerobic digestion research. Thanks also to Jesus E. Chavarria-Palma for assistance with data collection and graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Henry Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huber, D.H. (2020). Biogas Technology for Animal Manure Management in the USA: State of the Art, Opportunities, Challenges, and Perspectives. In: Balagurusamy, N., Chandel, A.K. (eds) Biogas Production. Springer, Cham. https://doi.org/10.1007/978-3-030-58827-4_4

Download citation

Publish with us

Policies and ethics

Navigation