Statins as Host-Directed Therapy for Tuberculosis

  • Chapter
  • First Online:
Advances in Host-Directed Therapies Against Tuberculosis

Abstract

Statins are a class of drugs that inhibit HMG-CoA reductase, the rate-limiting step in cholesterol biosynthesis, and are commonly used for primary and secondary prevention of cardiovascular disease. In addition to lowering cholesterol, statins also have broad immunomodulatory properties, and their use has been associated with improved clinical outcomes in patients with community-acquired pneumonia and sepsis. Multiple retrospective cohort studies have shown that statin use is associated with reduced tuberculosis (TB) incidence. Although at clinically recommended drug exposures they lack direct activity against Mycobacterium tuberculosis (Mtb), statins enhance the ability of Mtb-infected macrophages to clear intracellular infection by promoting autophagy and phagosome maturation. Recent data have revealed that these biological effects are dependent on inhibition of cholesterol biosynthesis and are mediated through the AMPK-mTORC1-TFEB-autophagy axis. Animal model studies have supported a role for statin adjunctive therapy against TB. Thus, the addition of simvastatin to the first-line antitubercular regimen reduced the duration of curative treatment by one month in the standard mouse model of chronic tuberculosis (TB), and pravastatin similarly showed potent, dose-dependent adjunctive activity in this model, as well as in a novel mouse model with human-like necrotic TB lung granulomas. An ongoing randomized clinical trial, Statin Adjunctive Therapy for TB (StAT-TB) is evaluating the safety, pharmacokinetics and adjunctive activity of pravastatin in patients with drug-susceptible, pulmonary TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402. doi: https://doi.org/10.1038/82219. PubMed PMID: 11100127.

  2. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203(2):325–30. Epub 2008/10/07. doi: https://doi.org/10.1016/j.atherosclerosis.2008.08.022. PubMed PMID: 18834985.

  3. Khurana V, Bejjanki HR, Caldito G, Owens MW. Statins reduce the risk of lung cancer in humans: a large case-control study of US veterans. Chest. 2007;131(5):1282–8. Epub 2007/05/15. doi: https://doi.org/10.1378/chest.06-0931. PubMed PMID: 17494779.

  4. Rothwell C, Lebreton A, Young Ng C, Lim JY, Liu W, Vasudevan S, et al. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology. 2009;389(1–2):8–19. Epub 2009/05/08. doi: https://doi.org/10.1016/j.virol.2009.03.025. PubMed PMID: 19419745.

  5. Almog Y, Shefer A, Novack V, Maimon N, Barski L, Eizinger M, et al. Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation. 2004;110(7):880–5. Epub 2004/08/04. doi: https://doi.org/10.1161/01.CIR.0000138932.17956.F1. PubMed PMID: 15289367.

  6. Dobesh PP, Klepser DG, McGuire TR, Morgan CW, Olsen KM. Reduction in mortality associated with statin therapy in patients with severe sepsis. Pharmacotherapy. 2009;29(6):621–30. Epub 2009/05/30. doi: https://doi.org/10.1592/phco.29.6.621. PubMed PMID: 19476415.

  7. van de Garde EM, Hak E, Souverein PC, Hoes AW, van den Bosch JM, Leufkens HG. Statin treatment and reduced risk of pneumonia in patients with diabetes. Thorax. 2006;61(11):957–61. Epub 2006/07/01. doi: https://doi.org/10.1136/thx.2006.062885. PubMed PMID: 16809409; PubMed Central PMCID: PMC2121156.

  8. Schlienger RG, Fedson DS, Jick SS, Jick H, Meier CR. Statins and the risk of pneumonia: a population-based, nested case-control study. Pharmacotherapy. 2007;27(3):325–32. Epub 2007/02/24. doi: https://doi.org/10.1592/phco.27.3.325. PubMed PMID: 17316144.

  9. Thomsen RW, Riis A, Kornum JB, Christensen S, Johnsen SP, Sorensen HT. Preadmission use of statins and outcomes after hospitalization with pneumonia: population-based cohort study of 29,900 patients. Arch Intern Med. 2008;168(19):2081–7. Epub 2008/10/29. doi: https://doi.org/10.1001/archinte.168.19.2081. PubMed PMID: 18955636.

  10. Catron DM, Lange Y, Borensztajn J, Sylvester MD, Jones BD, Haldar K. Salmonella enterica serovar typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect Immun. 2004;72(2):1036–42. Epub 2004/01/27. PubMed PMID: 14742551; PubMed Central PMCID: PMC321618.

    Google Scholar 

  11. Erkkila L, Jauhiainen M, Laitinen K, Haasio K, Tiirola T, Saikku P, et al. Effect of simvastatin, an established lipid-lowering drug, on pulmonary chlamydia pneumoniae infection in mice. Antimicrob Agents Chemother. 2005;49(9):3959–62. Epub 2005/08/30. doi: https://doi.org/10.1128/AAC.49.9.3959-3962.2005. PubMed PMID: 16127082; PubMed Central PMCID: PMC1195438.

  12. Parihar SP, Guler R, Lang DM, Suzuki H, Marais AD, Brombacher F. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting listeria-induced phagosomal escape. PLoS One. 2013;8(9):e75490. Epub 2013/10/03. doi: https://doi.org/10.1371/journal.pone.0075490. PubMed PMID: 24086542; PubMed Central PMCID: PMC3782446.

  13. Van Laar TA, Hole C, Rajasekhar Karna SL, Miller CL, Reddick R, Wormley FL, et al. Statins reduce spirochetal burden and modulate immune responses in the C3H/HeN mouse model of Lyme disease. Microbes Infect. 2016;18(6):430–5. doi: https://doi.org/10.1016/j.micinf.2016.03.004. PubMed PMID: 26993029; PubMed Central PMCID: PMCPMC4975942.

  14. Montero MT, Hernandez O, Suarez Y, Matilla J, Ferruelo AJ, Martinez-Botas J, et al. Hydroxymethylglutaryl-coenzyme a reductase inhibition stimulates caspase-1 activity and Th1-cytokine release in peripheral blood mononuclear cells. Atherosclerosis. 2000;153(2):303–13. doi: https://doi.org/10.1016/s0021-9150(00)00417-2. PubMed PMID: 11164419.

  15. Lu HZ, Li BQ. Effect of HMG-CoA reductase inhibitors on activation of human gammadeltaT cells induced by Mycobacterium tuberculosis antigens. Immunopharmacol Immunotoxicol. 2009;31(3):485–91. doi: https://doi.org/10.1080/08923970902806505. PubMed PMID: 19555197.

  16. Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, et al. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis. 2014;209(5):754–63. doi: https://doi.org/10.1093/infdis/jit550. PubMed PMID: 24133190.

  17. Skerry C, Pinn ML, Bruiners N, Pine R, Gennaro ML, Karakousis PC. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother. 2014;69(9):2453–7. doi: https://doi.org/10.1093/jac/dku166. PubMed PMID: 24855121; PubMed Central PMCID: PMCPMC4184365.

  18. Lobato LS, Rosa PS, Ferreira Jda S, Neumann Ada S, da Silva MG, Do Nascimento DC, et al. statins increase rifampin mycobactericidal effect. Antimicrob Agents Chemother. 2014;58(10):5766–74. Epub 2014/07/23. doi: https://doi.org/10.1128/AAC.01826-13. PubMed PMID: 25049257; PubMed Central PMCID: PMC4187984.

  19. Rens C, Laval F, Daffe M, Denis O, Frita R, Baulard A, et al. Effects of lipid-lowering drugs on vancomycin susceptibility of mycobacteria. Antimicrob Agents Chemother. 2016;60(10):6193–9. doi: https://doi.org/10.1128/AAC.00872-16. PubMed PMID: 27503643; PubMed Central PMCID: PMCPMC5038262.

  20. Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona PJ. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013;208(2):199–202. Epub 2013/04/09. doi: https://doi.org/10.1093/infdis/jit152. PubMed PMID: 23564636.

  21. Driver ER, Ryan GJ, Hoff DR, Irwin SM, Basaraba RJ, Kramnik I, et al. Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56(6):3181–95. Epub 2012/04/04. doi: AAC.00217-12 [pii]. https://doi.org/10.1128/AAC.00217-12. PubMed PMID: 22470120; PubMed Central PMCID: PMC3370740.

  22. Rosenthal IM, Tasneen R, Peloquin CA, Zhang M, Almeida D, Mdluli KE, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother. 2012;56(8):4331–40. Epub 2012/06/06. doi: https://doi.org/10.1128/AAC.00912-12. PubMed PMID: 22664964; PubMed Central PMCID: PMC3421552.

  23. Skerry C, Harper J, Klunk M, Bishai WR, Jain SK. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One. 2012;7(6):e39680. Epub 2012/07/05. doi: https://doi.org/10.1371/journal.pone.0039680. PubMed PMID: 22761866; PubMed Central PMCID: PMC3384606.

  24. Dutta NK, Illei PB, Jain SK, Karakousis PC. Characterization of a novel necrotic granuloma model of latent tuberculosis infection and reactivation in mice. Am J Pathol. 2014;184(7):2045–55. Epub 2014/05/13. doi: https://doi.org/10.1016/j.ajpath.2014.03.008. PubMed PMID: 24815353; PubMed Central PMCID: PMC4076462.

  25. Harper J, Skerry C, Davis SL, Tasneen R, Weir M, Kramnik I, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012;205(4):595–602. doi: https://doi.org/10.1093/infdis/jir786. PubMed PMID: 22198962; PubMed Central PMCID: PMCPMC3266133.

  26. Dutta NK, Karakousis PC. PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. Int J Antimicrob Agents. 2014;44(6):564–6. doi: https://doi.org/10.1016/j.ijantimicag.2014.07.012. PubMed PMID: 25270632; PubMed Central PMCID: PMCPMC4256118.

  27. Dutta NK, Bruiners N, Pinn ML, Zimmerman MD, Prideaux B, Dartois V, et al. Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother. 2016;71(6):1570–7. doi: https://doi.org/10.1093/jac/dkw014. PubMed PMID: 26903278; PubMed Central PMCID: PMCPMC5007636.

  28. Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous effects of statin therapy: a review of literature. Cureus. 2020;12(3):e7404. doi: https://doi.org/10.7759/cureus.7404. PubMed PMID: 32337130; PubMed Central PMCID: PMCPMC7182050.

  29. Kang YA, Choi NK, Seong JM, Heo EY, Koo BK, Hwang SS, et al. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus. Int J Tuberc Lung Dis. 2014;18(6):717–24. doi: https://doi.org/10.5588/ijtld.13.0854. PubMed PMID: 24903944.

  30. Lee MY, Lin KD, Hsu WH, Chang HL, Yang YH, Hsiao PJ, et al. Statin, calcium channel blocker and Beta blocker therapy may decrease the incidence of tuberculosis infection in elderly Taiwanese patients with type 2 diabetes. Int J Mol Sci. 2015;16(5):11369–84. doi: https://doi.org/10.3390/ijms160511369. PubMed PMID: 25993300; PubMed Central PMCID: PMCPMC4463705.

  31. Lai CC, Lee MT, Lee SH, Hsu WT, Chang SS, Chen SC, et al. Statin treatment is associated with a decreased risk of active tuberculosis: an analysis of a nationally representative cohort. Thorax. 2016;71(7):646–51. doi: https://doi.org/10.1136/thoraxjnl-2015-207052. PubMed PMID: 26941271.

  32. Liao KF, Lin CL, Lai SW. Population-based case-control study assessing the association between statins use and pulmonary tuberculosis in Taiwan. Front Pharmacol. 2017;8:597. doi: https://doi.org/10.3389/fphar.2017.00597. PubMed PMID: 28912719; PubMed Central PMCID: PMCPMC5583193.

  33. Su VY, Su WJ, Yen YF, Pan SW, Chuang PH, Feng JY, et al. Statin use is associated with a lower risk of TB. Chest. 2017;152(3):598–606. doi: https://doi.org/10.1016/j.chest.2017.04.170. PubMed PMID: 28479115.

  34. Yeh JJ, Lin CL, Hsu CY, Shae Z, Kao CH. Statin for tuberculosis and pneumonia in patients with asthma(−)chronic pulmonary disease overlap syndrome: a time-dependent population-based Cohort study. J Clin Med. 2018;7(11). doi: https://doi.org/10.3390/jcm7110381. PubMed PMID: 30355982; PubMed Central PMCID: PMCPMC6262333.

  35. Pan SW, Yen YF, Feng JY, Chuang PH, Su VY, Kou YR, et al. Opposite effects of statins on the risk of tuberculosis and herpes zoster in patients with diabetes: a population-based cohort study. Br J Clin Pharmacol 2019. doi: https://doi.org/10.1111/bcp.14142. PubMed PMID: 31633826.

  36. Lin SY, Tu HP, Lu PL, Chen TC, Wang WH, Chong IW, et al. Metformin is associated with a lower risk of active tuberculosis in patients with type 2 diabetes. Respirology. 2018;23(11):1063–73. doi: https://doi.org/10.1111/resp.13338. PubMed PMID: 29943489.

  37. Kim MC, Yun SC, Lee SO, Choi SH, Kim YS, Woo JH, et al. Association between tuberculosis, statin use, and diabetes: a propensity score-matched analysis. Am J Trop Med Hyg. 2019;101(2):350–6. doi: https://doi.org/10.4269/ajtmh.18-0983. PubMed PMID: 31264561; PubMed Central PMCID: PMCPMC6685556.

  38. Pan SW, Yen YF, Feng JY, Chuang PH, Su VY, Kou YR, et al. Opposite effects of statins on the risk of tuberculosis and herpes zoster in patients with diabetes: a population-based cohort study. Br J Clin Pharmacol. 2020;86(3):569–79. doi: https://doi.org/10.1111/bcp.14142. PubMed PMID: 31633826; PubMed Central PMCID: PMCPMC7080625.

  39. Li X, Sheng L, Lou L. Statin use may be associated with reduced active tuberculosis infection: a meta-analysis of observational studies. Front Med (Lausanne). 2020;7:121. doi: https://doi.org/10.3389/fmed.2020.00121. PubMed PMID: 32391364; PubMed Central PMCID: PMCPMC7194006.

  40. Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8(5):445–54. Epub 2010/11/16. doi: https://doi.org/10.1016/j.chom.2010.10.005. PubMed PMID: 21075355; PubMed Central PMCID: PMC3008410.

  41. Cuccurullo C, Iezzi A, Fazia ML, De Cesare D, Di Francesco A, Muraro R, et al. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26(12):2716–23. doi: https://doi.org/10.1161/01.ATV.0000249630.02085.12. PubMed PMID: 17038636.

  42. Singla S, Jacobson JR. Statins as a novel therapeutic strategy in acute lung injury. Pulm Circ. 2012;2(4):397–406. Epub 2013/02/02. doi: https://doi.org/10.4103/2045-8932.105028. PubMed PMID: 23372924; PubMed Central PMCID: PMC3555410.

  43. Leung PO, Wang SH, Lu SH, Chou WH, Shiau CY, Chou TC. Simvastatin inhibits pro-inflammatory mediators through induction of heme oxygenase-1 expression in lipopolysaccharide-stimulated RAW264.7 macrophages. Toxicol Lett. 2011;207(2):159–66. Epub 2011/09/20. doi: https://doi.org/10.1016/j.toxlet.2011.09.004. PubMed PMID: 21925249.

  44. Walsh A, Perrem L, Khashan AS, Henry MT, Ni Chroinin M. Statins versus placebo for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2019;7:CD011959. doi: https://doi.org/10.1002/14651858.CD011959.pub2. PubMed PMID: 31425628; PubMed Central PMCID: PMCPMC6699658.

  45. Guerra-De-Blas PDC, Torres-Gonzalez P, Bobadilla-Del-Valle M, Sada-Ovalle I, Ponce-De-Leon-Garduno A, Sifuentes-Osornio J. Potential effect of statins on Mycobacterium tuberculosis infection. J Immunol Res. 2018;2018:7617023. doi: https://doi.org/10.1155/2018/7617023. PubMed PMID: 30581876; PubMed Central PMCID: PMCPMC6276473.

  46. Bu DX, Griffin G, Lichtman AH. Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol. 2011;22(3):165–70. Epub 2011/03/18. doi: https://doi.org/10.1097/MOL.0b013e3283453e41. PubMed PMID: 21412153.

  47. Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell. 2018;172(1–2):135–46 e9. doi: https://doi.org/10.1016/j.cell.2017.11.025. PubMed PMID: 29328908.

  48. Zhou Q, Liao JK. Pleiotropic effects of statins. - basic research and clinical perspectives. Circ J. 2010;74(5):818–26. Epub 2010/04/29. PubMed PMID: 20424337; PubMed Central PMCID: PMC3807085.

    Google Scholar 

  49. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120(1):229–43. doi: https://doi.org/10.1161/CIRCRESAHA.116.308537. PubMed PMID: 28057795; PubMed Central PMCID: PMCPMC5467317.

  50. Oesterle A, Liao JK. The pleiotropic effects of statins – from coronary artery disease and stroke to atrial fibrillation and ventricular tachyarrhythmia. Curr Vasc Pharmacol. 2019;17(3):222–32. doi: https://doi.org/10.2174/1570161116666180817155058. PubMed PMID: 30124154; PubMed Central PMCID: PMCPMC6378117.

  51. ** Y, Tachibana I, Takeda Y, He P, Kang S, Suzuki M, et al. Statins decrease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages. PLoS One. 2013;8(9):e73706. Epub 2013/09/17. doi: https://doi.org/10.1371/journal.pone.0073706. PubMed PMID: 24040034; PubMed Central PMCID: PMC3767596.

  52. Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A. 2008;105(11):4376–80. Epub 2008/03/13. doi: https://doi.org/10.1073/pnas.0711159105. PubMed PMID: 18334639; PubMed Central PMCID: PMC2393810.

  53. Dutta NK, Mehra S, Didier PJ, Roy CJ, Doyle LA, Alvarez X, et al. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis. 2010;201(11):1743–52. Epub 2010/04/17. doi: https://doi.org/10.1086/652497. PubMed PMID: 20394526; PubMed Central PMCID: PMC2862080.

  54. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A. 2012;109(46):E3168–76. Epub 2012/10/25. doi: https://doi.org/10.1073/pnas.1210500109. PubMed PMID: 23093667; PubMed Central PMCID: PMC3503152.

  55. Bradfute SB, Castillo EF, Arko-Mensah J, Chauhan S, Jiang S, Mandell M, et al. Autophagy as an immune effector against tuberculosis. Curr Opin Microbiol. 2013;16(3):355–65. Epub 2013/06/25. doi: https://doi.org/10.1016/j.mib.2013.05.003. PubMed PMID: 23790398; PubMed Central PMCID: PMC3742717.

  56. Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, ** HS, et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe. 2012;11(5):457–68. Epub 2012/05/23. doi: https://doi.org/10.1016/j.chom.2012.03.008. PubMed PMID: 22607799.

  57. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell. 2006;126(1):205–18. doi: https://doi.org/10.1016/j.cell.2006.05.035. PubMed PMID: 16839887.

  58. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science. 2005;307(5715):1630–4. doi: https://doi.org/10.1126/science.1108003. PubMed PMID: 15761154.

  59. Sokolovska A, Becker CE, Ip WK, Rathinam VA, Brudner M, Paquette N, et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat Immunol. 2013;14(6):543–53. doi: https://doi.org/10.1038/ni.2595. PubMed PMID: 23644505; PubMed Central PMCID: PMCPMC3708594.

  60. Guerra-De-Blas PDC, Bobadilla-Del-Valle M, Sada-Ovalle I, Estrada-Garcia I, Torres-Gonzalez P, Lopez-Saavedra A, et al. Simvastatin enhances the immune response against Mycobacterium tuberculosis. Front Microbiol. 2019;10:2097. doi: https://doi.org/10.3389/fmicb.2019.02097. PubMed PMID: 31616387; PubMed Central PMCID: PMCPMC6764081.

  61. Rodrigues Diez R, Rodrigues-Diez R, Lavoz C, Rayego-Mateos S, Civantos E, Rodriguez-Vita J, et al. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-beta-independent process. PloS one. 2010;5(11):e14145. doi: https://doi.org/10.1371/journal.pone.0014145. PubMed PMID: 21152444; PubMed Central PMCID: PMCPMC2994748.

  62. Ma YX, Li WH, **e Q. Rosuvastatin inhibits TGF-beta1 expression and alleviates myocardial fibrosis in diabetic rats. Pharmazie. 2013;68(5):355–8. PubMed PMID: 23802433.

    Google Scholar 

  63. Wu M, Aung H, Hirsch CS, Toossi Z. Inhibition of Mycobacterium tuberculosis-induced signalling by transforming growth factor-beta in human mononuclear phagocytes. Scand J Immunol. 2012;75(3):301–4. doi: https://doi.org/10.1111/j.1365-3083.2011.02668.x. PubMed PMID: 22150316; PubMed Central PMCID: PMCPMC3279592.

  64. Bruiners N, Dutta NK, Guerrini V, Salamon H, Yamaguchi KD, Karakousis PC, et al. The anti-tubercular activity of simvastatin is mediated by cholesterol-dependent regulation of autophagy via the AMPK-mTORC1-TFEB axis. J Lipid Res. 2020; doi: https://doi.org/10.1194/jlr.RA120000895.PubMedPMID:32848049.

Download references

Potential Conflicts of Interest

All authors: No reported conflicts of interest.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Funding

This work was supported by NIH/NIAID grant UH2/3 AI122309 to PCK. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros C. Karakousis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, N.K., Karakousis, P.C. (2021). Statins as Host-Directed Therapy for Tuberculosis. In: Karakousis, P.C., Hafner, R., Gennaro, M.L. (eds) Advances in Host-Directed Therapies Against Tuberculosis . Springer, Cham. https://doi.org/10.1007/978-3-030-56905-1_8

Download citation

Publish with us

Policies and ethics

Navigation