Coronaviruses as Vaccine Vectors for Veterinary Pathogens

  • Chapter
  • First Online:
Viral Vectors in Veterinary Vaccine Development

Abstract

Coronaviruses (CoVs, family Coronaviridae) are enveloped, plus-stranded RNA viruses that can cause highly contagious upper respiratory diseases in humans and animals with potentially fatal outcomes. Typical symptoms found in chickens infected with infectious bronchitis coronavirus (IBV) include coughing, sneezing, gas**, nasal discharge and tracheal rales. Animal CoVs also cause local epidemics and pandemics with high infection rates, significantly increasing the economic burden on the poultry and livestock industry. With the realization that animal CoVs can be transmitted to humans, these viruses are now considered a global health threat. Improvement in technologies, such as reverse genetics, has conferred the ability to manipulate coronaviral genomes in the development of antiviral intervention and as vaccine vectors against other veterinary pathogens. This chapter summarizes new information on CoV reverse genetics and advances in vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 90.94
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schalk AF, Hawn MC. An apparently new respiratory disease of baby chicks. J Am Vet Med Assoc. 1931;78:413–6.

    Google Scholar 

  2. Bushnell LD, Brandly CA. Laryngotracheitis in chicks. Poult Sci. 1933;12(1):55–60.

    Article  Google Scholar 

  3. Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190–3.

    Article  CAS  PubMed  Google Scholar 

  5. McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci U S A. 1967;58(6):2268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A. 1967;57(4):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Witte KH, Tajima M, Easterday BC. Morphologic characteristics and nucleic acid type of transmissible gastroenteritis virus of pigs. Arch Gesamte Virusforsch. 1968;23(1):53–70.

    Article  CAS  PubMed  Google Scholar 

  8. Tyrrell DA, Almeida JD, Cunningham CH, Dowdle WR, Hofstad MS, McIntosh K, et al. Coronaviridae Intervirol. 1975;5(1–2):76–82.

    Article  CAS  Google Scholar 

  9. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res. 2018;46(D1):D708–D17.

    Article  CAS  PubMed  Google Scholar 

  11. McIntosh K. Coronaviruses: a comparative review. Curr Top Microbiol Immunol. 1974;63:85–129.

    Google Scholar 

  12. Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kienzle TE, Abraham S, Hogue BG, Brian DA. Structure and orientation of expressed bovine coronavirus hemagglutinin-esterase protein. J Virol. 1990;64(4):1834–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yokomori K, La Monica N, Makino S, Shieh CK, Lai MM. Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus. Virology. 1989;173(2):683–91.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Guo D. Molecular mechanisms of coronavirus RNA cap** and methylation. Virol Sin. 2016;31(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res. 2015;206:120–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winter C, Schwegmann-Wessels C, Cavanagh D, Neumann U, Herrler G. Sialic acid is a receptor determinant for infection of cells by avian infectious bronchitis virus. J Gen Virol. 2006;87(Pt 5):1209–16.

    Article  CAS  PubMed  Google Scholar 

  18. Winter C, Herrler G, Neumann U. Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent. Microbes Infect. 2008;10(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  19. Abd El Rahman S, El-Kenawy AA, Neumann U, Herrler G, Winter C. Comparative analysis of the sialic acid binding activity and the tropism for the respiratory epithelium of four different strains of avian infectious bronchitis virus. Avian Pathol. 2009;38(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  20. Yamada Y, Liu DX. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol. 2009;83(17):8744–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Araki K, Gangappa S, Dillehay DL, Rouse BT, Larsen CP, Ahmed R. Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. J Exp Med. 2010;207(11):2355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim KP, Ng LF, Liu DX. Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol. 2000;74(4):1674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007;81(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lai MM, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL, et al. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol. 1985;56(2):449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keck JG, Makino S, Soe LH, Fleming JO, Stohlman SA, Lai MM. RNA recombination of coronavirus. Adv Exp Med Biol. 1987;218:99–107.

    Article  CAS  PubMed  Google Scholar 

  27. Tooze J, Tooze S, Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984;33(2):281–93.

    CAS  PubMed  Google Scholar 

  28. Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124(1–2):55–70.

    Article  CAS  PubMed  Google Scholar 

  29. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165–230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Izeta A, Smerdou C, Alonso S, Penzes Z, Mendez A, Plana-Duran J, et al. Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes. J Virol. 1999;73(2):1535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narayanan K, Makino S. Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J Virol. 2001;75(19):9059–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Repass JF, Makino S. Importance of the positive-strand RNA secondary structure of a murine coronavirus defective interfering RNA internal replication signal in positive-strand RNA synthesis. J Virol. 1998;72(10):7926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol. 1999;73(10):8349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sturman LS, Eastwood C, Frana MF, Duchala C, Baker F, Ricard CS, et al. Temperature-sensitive mutants of MHV-A59. Adv Exp Med Biol. 1987;218:159–68.

    Article  CAS  PubMed  Google Scholar 

  35. Martin JP, Koehren F, Rannou JJ, Kirn A. Temperature-sensitive mutants of mouse hepatitis virus type 3 (MHV-3): isolation, biochemical and genetic characterization. Arch Virol. 1988;100(3–4):147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen S, Liu DX. Characterization of temperature-sensitive (ts) mutants of coronavirus infectious bronchitis virus (IBV). Adv Exp Med Biol. 2001;494:557–62.

    Article  CAS  PubMed  Google Scholar 

  37. Stobart CC, Lee AS, Lu X, Denison MR. Temperature-sensitive mutants and revertants in the coronavirus nonstructural protein 5 protease (3CLpro) define residues involved in long-distance communication and regulation of protease activity. J Virol. 2012;86(9):4801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Masters PS. Reverse genetics of the largest RNA viruses. Adv Virus Res. 1999;53:245–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masters PS, Rottier PJ. Coronavirus reverse genetics by targeted RNA recombination. Curr Top Microbiol Immunol. 2005;287:133–59.

    CAS  PubMed  Google Scholar 

  40. Makino S, Keck JG, Stohlman SA, Lai MM. High-frequency RNA recombination of murine coronaviruses. J Virol. 1986;57(3):729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baric RS, Fu K, Schaad MC, Stohlman SA. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology. 1990;177(2):646–56.

    Article  CAS  PubMed  Google Scholar 

  42. Kusters JG, Jager EJ, Niesters HG, van der Zeijst BA. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus. Vaccine. 1990;8(6):605–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Beurden SJ, Berends AJ, Kramer-Kuhl A, Spekreijse D, Chenard G, Philipp HC, et al. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination. Virol J. 2017;14(1):109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yount B, Curtis KM, Baric RS. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol. 2000;74(22):10600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol. 2001;75(24):12359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yount B, Denison MR, Weiss SR, Baric RS. Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol. 2002;76(21):11065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2003;100(22):12995–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baric RS, Sims AC. Development of mouse hepatitis virus and SARS-CoV infectious cDNA constructs. Curr Top Microbiol Immunol. 2005;287:229–52.

    CAS  PubMed  Google Scholar 

  49. Haijema BJ, Volders H, Rottier PJ. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol. 2003;77(8):4528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez CM, Izeta A, Sanchez-Morgado JM, Alonso S, Sola I, Balasch M, et al. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol. 1999;73(9):7607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992;89(18):8794–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A. 2000;97(10):5516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gonzalez JM, Penzes Z, Almazan F, Calvo E, Enjuanes L. Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron. J Virol. 2002;76(9):4655–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang K, Boysen C, Shizuya H, Simon MI, Hood L. Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. BioTechniques. 1997;23(6):992–4.

    Article  CAS  PubMed  Google Scholar 

  55. Dubensky TW Jr, Driver DA, Polo JM, Belli BA, Latham EM, Ibanez CE, et al. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol. 1996;70(1):508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pfefferle S, Krahling V, Ditt V, Grywna K, Muhlberger E, Drosten C. Reverse genetic characterization of the natural genomic deletion in SARS-coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol J. 2009;6:131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.

    Article  CAS  PubMed  Google Scholar 

  58. Montigny WJ, Phelps SF, Illenye S, Heintz NH. Parameters influencing high-efficiency transfection of bacterial artificial chromosomes into cultured mammalian cells. BioTechniques. 2003;35(4):796–807.

    Article  CAS  PubMed  Google Scholar 

  59. DeDiego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81(4):1701–13.

    Article  CAS  PubMed  Google Scholar 

  60. Enjuanes L, Dediego ML, Alvarez E, Deming D, Sheahan T, Baric R. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Res. 2008;133(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  61. Fett C, DeDiego ML, Regla-Nava JA, Enjuanes L, Perlman S. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013;87(12):6551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Almazan F, DeDiego ML, Sola I, Zuniga S, Nieto-Torres JL, Marquez-Jurado S, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio. 2013;4(5):e00650–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2013;110(40):16157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fang S, Chen B, Tay FP, Ng BS, Liu DX. An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells. Virology. 2007;358(1):136–47.

    Article  CAS  PubMed  Google Scholar 

  65. Youn S, Leibowitz JL, Collisson EW. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication. Virology. 2005;332(1):206–15.

    Article  CAS  PubMed  Google Scholar 

  66. Tan YW, Fang S, Fan H, Lescar J, Liu DX. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17):4816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Donaldson EF, Graham RL, Sims AC, Denison MR, Baric RS. Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol. 2007;81(13):7086–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci U S A. 2008;105(50):19944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med. 2006;3(12):e525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yount B, Roberts RS, Lindesmith L, Baric RS. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome. Proc Natl Acad Sci U S A. 2006;103(33):12546–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thiel V, Herold J, Schelle B, Siddell SG. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol. 2001;82(Pt 6):1273–81.

    Article  CAS  PubMed  Google Scholar 

  72. Eriksson KK, Makia D, Thiel V. Generation of recombinant coronaviruses using vaccinia virus as the cloning vector and stable cell lines containing coronaviral replicon RNAs. Methods Mol Biol. 2008;454:237–54.

    Article  CAS  PubMed  Google Scholar 

  73. Tekes G, Hofmann-Lehmann R, Stallkamp I, Thiel V, Thiel HJ. Genome organization and reverse genetic analysis of a type I feline coronavirus. J Virol. 2008;82(4):1851–9.

    Article  CAS  PubMed  Google Scholar 

  74. Tekes G, Spies D, Bank-Wolf B, Thiel V, Thiel HJ. A reverse genetics approach to study feline infectious peritonitis. J Virol. 2012;86(12):6994–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coley SE, Lavi E, Sawicki SG, Fu L, Schelle B, Karl N, et al. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol. 2005;79(5):3097–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith GL, Moss B. Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene. 1983;25(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  77. Merchlinsky M, Moss B. Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology. 1992;190(1):522–6.

    Article  CAS  PubMed  Google Scholar 

  78. Ball LA. High-frequency homologous recombination in vaccinia virus DNA. J Virol. 1987;61(6):1788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Britton P, Evans S, Dove B, Davies M, Casais R, Cavanagh D. Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods. 2005;123(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  80. Scheiflinger F, Dorner F, Falkner FG. Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proc Natl Acad Sci U S A. 1992;89(21):9977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol. 2001;75(1):506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thiel V, Herold J, Schelle B, Siddell SG. Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol. 2001;75(14):6676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keep SM, Bickerton E, Britton P. Transient dominant selection for the modification and generation of recombinant infectious bronchitis coronaviruses. Methods Mol Biol. 2015;1282:115–33.

    Article  CAS  PubMed  Google Scholar 

  84. Thiel V, Karl N, Schelle B, Disterer P, Klagge I, Siddell SG. Multigene RNA vector based on coronavirus transcription. J Virol. 2003;77(18):9790–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Almazan F, Galan C, Enjuanes L. The nucleoprotein is required for efficient coronavirus genome replication. J Virol. 2004;78(22):12683–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schelle B, Karl N, Ludewig B, Siddell SG, Thiel V. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol. 2005;79(11):6620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Curtis KM, Yount B, Baric RS. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol. 2002;76(3):1422–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hertzig T, Scandella E, Schelle B, Ziebuhr J, Siddell SG, Ludewig B, et al. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J Gen Virol. 2004;85(Pt 6):1717–25.

    Article  CAS  PubMed  Google Scholar 

  89. Chen L, Gui C, Luo X, Yang Q, Gunther S, Scandella E, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J Virol. 2005;79(11):7095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Almazan F, Dediego ML, Galan C, Escors D, Alvarez E, Ortego J, et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol. 2006;80(21):10900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahn DG, Lee W, Choi JK, Kim SJ, Plant EP, Almazan F, et al. Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antivir Res. 2011;91(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  92. Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol. 2012;86(20):11128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pan J, Peng X, Gao Y, Li Z, Lu X, Chen Y, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One. 2008;3(10):e3299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Moreno JL, Zuniga S, Enjuanes L, Sola I. Identification of a coronavirus transcription enhancer. J Virol. 2008;82(8):3882–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ortego J, Escors D, Laude H, Enjuanes L. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J Virol. 2002;76(22):11518–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Haan CA, Volders H, Koetzner CA, Masters PS, Rottier PJ. Coronaviruses maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J Virol. 2002;76(24):12491–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Shen H, Fang SG, Chen B, Chen G, Tay FP, Liu DX. Towards construction of viral vectors based on avian coronavirus infectious bronchitis virus for gene delivery and vaccine development. J Virol Methods. 2009;160(1–2):48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol. 2005;79(21):13399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Freeman MC, Graham RL, Lu X, Peek CT, Denison MR. Coronavirus replicase-reporter fusions provide quantitative analysis of replication and replication complex formation. J Virol. 2014;88(10):5319–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. V’Kovski P, Gerber M, Kelly J, Pfaender S, Ebert N, Braga Lagache S, et al. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling. elife. 2019;8

    Google Scholar 

  101. Rice CM. Examples of expression systems based on animal RNA viruses: alphaviruses and influenza virus. Curr Opin Biotechnol. 1992;3(5):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Enjuanes L, Sola I, Almazan F, Ortego J, Izeta A, Gonzalez JM, et al. Coronavirus derived expression systems. J Biotechnol. 2001;88(3):183–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Haan CA, Haijema BJ, Boss D, Heuts FW, Rottier PJ. Coronaviruses as vectors: stability of foreign gene expression. J Virol. 2005;79(20):12742–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Godeke GJ, de Haan CA, Rossen JW, Vennema H, Rottier PJ. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J Virol. 2000;74(3):1566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuo L, Godeke GJ, Raamsman MJ, Masters PS, Rottier PJ. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol. 2000;74(3):1393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hodgson T, Casais R, Dove B, Britton P, Cavanagh D. Recombinant infectious bronchitis coronavirus Beaudette with the spike protein gene of the pathogenic M41 strain remains attenuated but induces protective immunity. J Virol. 2004;78(24):13804–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hodgson T, Britton P, Cavanagh D. Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication. J Virol. 2006;80(1):296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tarpey I, Orbell SJ, Britton P, Casais R, Hodgson T, Lin F, et al. Safety and efficacy of an infectious bronchitis virus used for chicken embryo vaccination. Vaccine. 2006;24(47–48):6830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wei YQ, Guo HC, Dong H, Wang HM, Xu J, Sun DH, et al. Development and characterization of a recombinant infectious bronchitis virus expressing the ectodomain region of S1 gene of H120 strain. Appl Microbiol Biotechnol. 2014;98(4):1727–35.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou Y, Yang X, Wang H, Zeng F, Zhang Z, Zhang A, et al. The establishment and characteristics of cell-adapted IBV strain H120. Arch Virol. 2016;161(11):3179–87.

    Article  CAS  PubMed  Google Scholar 

  111. Sola I, Alonso S, Zuniga S, Balasch M, Plana-Duran J, Enjuanes L. Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity. J Virol. 2003;77(7):4357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cruz JL, Zuniga S, Becares M, Sola I, Ceriani JE, Juanola S, et al. Vectored vaccines to protect against PRRSV. Virus Res. 2010;154(1–2):150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Becares M, Sanchez CM, Sola I, Enjuanes L, Zuniga S. Antigenic structures stably expressed by recombinant TGEV-derived vectors. Virology. 2014;464–465:274–86.

    Article  PubMed  CAS  Google Scholar 

  114. Eriksson KK, Makia D, Maier R, Cervantes L, Ludewig B, Thiel V. Efficient transduction of dendritic cells using coronavirus-based vectors. Adv Exp Med Biol. 2006;581:203–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thiel V, Siddell SG. Reverse genetics of coronaviruses using vaccinia virus vectors. Curr Top Microbiol Immunol. 2005;287:199–227.

    CAS  PubMed  Google Scholar 

  116. Kim H, Lee YK, Kang SC, Han BK, Choi KM. Recent vaccine technology in industrial animals. Clin Exp Vaccine Res. 2016;5(1):12–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, D.X., Ng, Y.L., Fung, T.S. (2021). Coronaviruses as Vaccine Vectors for Veterinary Pathogens. In: Vanniasinkam, T., Tikoo, S.K., Samal, S.K. (eds) Viral Vectors in Veterinary Vaccine Development. Springer, Cham. https://doi.org/10.1007/978-3-030-51927-8_10

Download citation

Publish with us

Policies and ethics

Navigation