Hybrid Approach for Prediction and Modelling of Abrasive Water Jet Machining Parameter on Al-NiTi Composites

  • Chapter
  • First Online:
Intelligent Manufacturing

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

  • 426 Accesses

Abstract

In this work, pure aluminium and NiTi is used as matrix and reinforcement to fabricate a smart composite. To get an improved mechanical property, primarily the powder metallurgy process parameters are optimized, and the best processing parameters are used for the fabrication of composites materials and subsequently the composite is used for machining studies. Abrasive Water Jet Machining (AWJM) process is used to study the machinability characteristics of the Al- NiTi smart composites. To study the effect of AWJM parameters on Al-NiTi composites, the following control variables identified are Transverse Speed (TS), Applied Pressure (AP), Standoff Distance (SoD), % Wt. of reinforcements (wt%), Abrasive Size (AS). The output indices are Surface Roughness (Ra) and Kerf Angle (Ka). The experiments are designed and conducted based on the design of experiment. Further, it describes the effectiveness of the hybrid algorithm in predicting and optimizing the Abrasive Water Jet Machining (AWJM) parameters. Grey Relational Analysis (GRA) is used as a feature selection and optimizing tool. The result of feature selection by GRA–Entropy, reveals that the most influencing control variables are ranked in the order as AS, AP, TS, wt% and SoD. Modelling of AWJM process is done by Support Vector Machine algorithm (SVM), and the performance of the model is compared with SVM hybrid models. A hybrid model is developed with the concept of Differential Evolutionary algorithm (DE) and Entropy. Hybrid SVM–Entropy model displayed increased prediction performance by 37.8% compared to the SVM model. GRA–SVM–Entropy hybrid model is compared with the SVM model, it is found that the prediction performance of the GRA–SVM–Entropy hybrid model increased by 49.1%. It is found from the GRA–Entropy method; the optimal conditions are A2, B1, C1, D3, and E1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55(1), 41–64 (2010)

    Article  Google Scholar 

  2. D.B. Miracle, Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    Article  Google Scholar 

  3. G.A. Porter, P.K. Liaw, T.N. Tiegs, K.H. Wu, Fatigue and fracture behavior of nickel-titanium shape-memory alloy reinforced aluminum composites. Mater. Sci. Eng., A 314(1–2), 186–193 (2001)

    Article  Google Scholar 

  4. S.L. Angioni, M. Meo, A. Foreman, Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review. Smart Mater Struct. 20(1) (2011)

    Google Scholar 

  5. M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir processes Al 1100-NiTi composite. Scr. Mater. 56, 541–544 (2007)

    Article  Google Scholar 

  6. C.L. **e, M. Hailat, X. Wu, G.M. Newaz, M. Taya, B. Raju, Development of short fiber reinforced NiTi/Al6061composites. ASME J. Eng. Mater. Technol. 129, 69–76 (2007)

    Article  Google Scholar 

  7. D. San Martín, D.D. Risanti, G. Garces, P.E.J. Rivera Diaz del Castillo, S. van der Zwaag, On the production and properties of novel particulate NiTip/AA2124 metal matrix composites. Mater. Sci. Eng., A 526, 250–252 (2009)

    Google Scholar 

  8. O. Akalin, K.V. Ezirmik, M. Urgen, G.M. Newaz, Wear characteristics of NiTi/Al6061 short fiber metal matrix composite reinforced with SiC particulates. J. Tribol. 132(4) (2010)

    Google Scholar 

  9. H.C. Lin, K.M. Lin, Y.C. Chen, A study on the machining characteristics of TiNi shape memory alloys. J. Mater. Process. Technol. 105, 327–332 (2000)

    Google Scholar 

  10. S. Narendranath, M. Manjaiah, S. Basavarajappa, V.N. Gaitonde, Experimental investigations on performance characteristics in wire electro discharge machining of Ti50Ni42.4Cu7.6 shape memory alloy. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227(8), 1180–1187 (2013)

    Google Scholar 

  11. H. Abdizadeh, M. Ashuri, P.T. Moghadam, A. Nouribahadory, H.R. Baharvandi, Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method. Mater. Des. 32(8), 4417–4423 (2011)

    Article  Google Scholar 

  12. T.C. Phokane, K. Gupta, M.K. Gupta, Investigations on surface roughness and tribology of miniature brass gears manufactured by abrasive water jet machining. Proc. IMechE, Part C: J. Mech. Eng. Sci. (Sage) 232(22), 4193–4202 (2018)

    Google Scholar 

  13. M.C. Kong, D. Axinte, W. Voice, Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled depth milling. J. Mater. Process. Technol. 211(6), 959–971 (2011)

    Article  Google Scholar 

  14. M. Frotscher, F. Kahleyss, T. Simon, D. Biermann, G. Eggeler, Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: a comparison. J. Mater. Eng. Perform. 15, 776–782 (2011)

    Google Scholar 

  15. J. Zhou, J. Ren, C. Yao, Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm. Measurement 102, 271–285 (2017)

    Article  Google Scholar 

  16. H.S. Lu, C.K. Chang, N.C. Hwang, C.T. Chung, Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling. J. Mater. Process. Technol. 209(8), 3808–3817 (2009)

    Article  Google Scholar 

  17. A. Nair, S. Kumanan, Multi-performance optimization of abrasive water jet machining of Inconel 617 using WPCA. Mater. Manuf. Processes 32(6), 693–699 (2017)

    Article  Google Scholar 

  18. S. Rajesh, S. Rajakarunakaran, R. Sudhkarapandian, Optimization of the red mud–aluminum composite in the turning process by the Grey relational analysis with entropy. J. Compos. Mater. 48(17), 2097–2105 (2014)

    Article  Google Scholar 

  19. A.M. Zain, H. Haron, S. Sharif, Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst. Appl. 38(7), 8316–8326 (2011)

    Article  Google Scholar 

  20. T. Verplancke, S. Van Looy, D. Benoit, S. Vansteelandt, P. Depuydt, F. De Turck, J. Decruyenaere, Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies. BMC Med. Inform. Decis. Mak. 8(56), 1–8 (2008)

    Google Scholar 

  21. R. Venkata Rao, V.D. Kalyankar, Optimization of modern machining processes using advanced optimization techniques: a review. Int. J. Adv. Manuf. Technol. 73(5–8), 1159–1188 (2014)

    Google Scholar 

  22. Ulaş Çaydaş, Sami Ekici, Support vector machines models for Ra prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 23(3), 639–650 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajesh, S., Nair, A., Adam Khan, M., Ra**i, N. (2021). Hybrid Approach for Prediction and Modelling of Abrasive Water Jet Machining Parameter on Al-NiTi Composites. In: Pathak, S. (eds) Intelligent Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-50312-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50312-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50311-6

  • Online ISBN: 978-3-030-50312-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation