Quantum Theory and Computing for Surgeons

  • Chapter
  • First Online:
Digital Surgery

Abstract

This chapter is intended to be an introduction to quantum mechanics and computing for surgeons and non-computer scientists. It explains the basis of quantum computers through an understanding of the principles of quantum mechanics and theory. Differences between classical computing and quantum computing are highlighted. Building upon the previous chapter, the potential for applying such quantum computing systems within a cloud framework toward the development of future digital operating theaters and next-generation surgical robots is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.

    Article  CAS  PubMed  Google Scholar 

  2. Schrödinger E. Quantisierung als eigenwertproblem. Ann Phys. 1926;385(13):437–90.

    Article  Google Scholar 

  3. Heisenberg W. The physical principles of the quantum theory. Mineola, New York, USA: Courier Corporation; 1949.

    Google Scholar 

  4. Kramers HA, Heisenberg W. Über die streuung von strahlung durch atome. Zeitschrift für Physik A Hadrons and Nuclei. 1925;31(1):681–708.

    CAS  Google Scholar 

  5. Heisenberg W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Phys. 1927;43:172–98.

    Article  Google Scholar 

  6. Millikan RA. Einstein’s photoelectric equation and contact electromotive force. Phys Rev. 1916;7(1):18.

    Article  CAS  Google Scholar 

  7. Davisson C, Germer LH. Diffraction of electrons by a crystal of nickel. Phys Rev. 1927;30(6):705.

    Article  CAS  Google Scholar 

  8. Wheeler JA. The “past” and the “delayed-choice” double-slit experiment. In: Mathematical foundations of quantum theory. New York, New York, USA: Academic Press, Inc.; 1978. p. 9–48.

    Google Scholar 

  9. Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A, Roch JF. Experimental realization of Wheeler’s delayed-choice gedanken experiment. Science. 2007;315(5814):966–8.

    Article  CAS  PubMed  Google Scholar 

  10. Walborn SP, Cunha MT, Pádua S, Monken CH. Double-slit quantum eraser. Phys Rev A. 2002;65(3):033818.

    Article  Google Scholar 

  11. Kim YH, Yu R, Kulik SP, Shih Y, Scully MO. Delayed “choice” quantum eraser. Phys Rev Lett. 2000;84(1):1.

    Article  CAS  PubMed  Google Scholar 

  12. Compton AH. A quantum theory of the scattering of X-rays by light elements. Phys Rev. 1923;21(5):483.

    Article  CAS  Google Scholar 

  13. De Broglie L. Waves and quanta. Nature. 1923;112(2815):540.

    Article  Google Scholar 

  14. Bloch F. Nuclear induction. Phys Rev. 1946;70(7–8):460.

    Article  CAS  Google Scholar 

  15. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69(1–2):37.

    Article  CAS  Google Scholar 

  16. Gerlach W, Stern O. über die richtungsquantelung im magnetfeld. Ann Phys. 1924;379(16):673–99.

    Article  Google Scholar 

  17. Rosen N, Zener C. Double Stern-Gerlach experiment and related collision phenomena. Phys Rev. 1932;40(4):502.

    Article  CAS  Google Scholar 

  18. Bohr N. The structure of the atom. Nature. 1923;112(2801):29.

    Article  CAS  Google Scholar 

  19. Bengtsson I, Życzkowski K. Geometry of quantum states: an introduction to quantum entanglement. Cambridge, United Kingdom: Cambridge university press; 2017. 2017.

    Google Scholar 

  20. Laflorencie N. Quantum entanglement in condensed matter systems. Phys Rep. 2016 Aug 3;646:1–59.

    Article  Google Scholar 

  21. Streltsov A. Quantum entanglement. In: Quantum correlations beyond entanglement. Cham: Springer; 2015. p. 11–6.

    Google Scholar 

  22. Bernhardt C. Quantum computing for everyone. Cambridge, MA, USA: MIT Press; 2019.

    Google Scholar 

  23. Bell JS. On the einstein podolsky rosen paradox. Physics Physique Fizika. 1964;1(3):195.

    Article  Google Scholar 

  24. Erber T, Putterman S. Randomness in quantum mechanics—nature’s ultimate cryptogram? Nature. 1985;318(6041):41.

    Article  CAS  Google Scholar 

  25. Dürr D, Goldstein S, Zanghi N. Quantum mechanics, randomness, and deterministic reality. Phys Lett A. 1992;172(1–2):6–12.

    Article  Google Scholar 

  26. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev. 1935;47(10):777.

    Article  CAS  Google Scholar 

  27. Kohn W, Luttinger JM. Quantum theory of electrical transport phenomena. Phys Rev. 1957;108(3):590.

    Article  CAS  Google Scholar 

  28. Bouwmeester D, Pan JW, Mattle K, Eibl M, Weinfurter H, Zeilinger A. Experimental quantum teleportation. Nature. 1997;390(6660):575.

    Article  CAS  Google Scholar 

  29. Ren JG, Xu P, Yong HL, Zhang L, Liao SK, Yin J, Liu WY, Cai WQ, Yang M, Li L, Yang KX. Ground-to-satellite quantum teleportation. Nature. 2017;549(7670):70.

    Article  CAS  PubMed  Google Scholar 

  30. Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999;41(2):303–32.

    Article  Google Scholar 

  31. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. Philadelphia, PA, USA: IEEE; 1994. p. 124–34.

    Google Scholar 

  32. Grover LK. A fast quantum mechanical algorithm for database search. ar**v preprint quant-ph/9605043. 1996.

    Google Scholar 

  33. Grover LK. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett. 1997;79(2):325.

    Article  CAS  Google Scholar 

  34. Zidan M, Abdel-Aty AH, El-shafei M, Feraig M, Al-Sbou Y, Eleuch H, Abdel-Aty M. Quantum classification algorithm based on competitive learning neural network and entanglement measure. Appl Sci. 2019;9(7):1277.

    Article  Google Scholar 

  35. Zidan M, Abdel-Aty AH, Younes A, Zanaty EA, El-khayat I, Abdel-Aty M. A novel algorithm based on entanglement measurement for improving speed of quantum algorithms. Appl Math. 2018;12(1):265–9.

    Google Scholar 

  36. Zalka C. Grover’s quantum searching algorithm is optimal. Phys Rev A. 1999;60(4):2746.

    Article  CAS  Google Scholar 

  37. Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature. 2001;414(6866):883.

    Article  CAS  PubMed  Google Scholar 

  38. Bennett CH, Shor PW. Quantum information theory. IEEE Trans Inf Theory. 1998;44(6):2724–42.

    Article  Google Scholar 

  39. Lanyon BP, Weinhold TJ, Langford NK, Barbieri M, James DF, Gilchrist A, White AG. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys Rev Lett. 2007;99(25):250505.

    Article  CAS  PubMed  Google Scholar 

  40. Leuenberger MN, Loss D. Quantum computing in molecular magnets. Nature. 2001;410(6830):789.

    Article  CAS  PubMed  Google Scholar 

  41. Steane A. Quantum computing. Rep Prog Phys. 1998;61(2):117.

    Article  CAS  Google Scholar 

  42. Walther P, Resch KJ, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M, Zeilinger A. Experimental one-way quantum computing. Nature. 2005;434(7030):169.

    Article  CAS  PubMed  Google Scholar 

  43. Feynman RP. Quantum mechanical computers. Optics News. 1985;11(2):11–20.

    Article  Google Scholar 

  44. Deutsch D. Quantum theory, the church–Turing principle and the universal quantum computer. Proc Royal Soc Lond A Math Phys Sci. 1985;400(1818):97–117.

    Google Scholar 

  45. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, Burkett B. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10.

    Article  CAS  PubMed  Google Scholar 

  46. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H. Elementary gates for quantum computation. Phys Rev A. 1995;52(5):3457.

    Article  CAS  PubMed  Google Scholar 

  47. Monroe C, Meekhof DM, King BE, Itano WM, Wineland DJ. Demonstration of a fundamental quantum logic gate. Phys Rev Lett. 1995;75(25):4714.

    Article  CAS  PubMed  Google Scholar 

  48. Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, Harris R, Hilton JP, Lanting T, Przybysz AJ, Whittaker J. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans Appl Supercond. 2014;24(4):1–0.

    Google Scholar 

  49. Finnila AB, Gomez MA, Sebenik C, Stenson C, Doll JD. Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett. 1994;219(5–6):343–8.

    Article  CAS  Google Scholar 

  50. Josephson BD. Possible new effects in superconductive tunnelling. Phys Lett. 1962;1(7):251–3.

    Article  Google Scholar 

  51. Makhlin Y, Scöhn G, Shnirman A. Josephson-junction qubits with controlled couplings. Nature. 1999;398(6725):305.

    Article  CAS  Google Scholar 

  52. Cataliotti FS, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A, Inguscio M. Josephson junction arrays with Bose-Einstein condensates. Science. 2001;293(5531):843–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hamlin JJ. Superconductivity near room temperature. Nature. 2019;569(7757):491–2.

    Article  CAS  PubMed  Google Scholar 

  54. Benioff P. Quantum robots and environments. Phys Rev A. 1998;58(2):893.

    Article  CAS  Google Scholar 

  55. Benioff P. Some foundational aspects of quantum computers and quantum robots. Superlattice Microst. 1998;23(3–4):407–17.

    Article  CAS  Google Scholar 

  56. Benioff P. Quantum robots. Feynman Comput. 2018;8:155–75.

    Article  Google Scholar 

  57. Dong D, Chen C, Zhang C, Chen Z. Quantum robot: structure, algorithms and applications. Robotica. 2006;24(4):513–21.

    Article  Google Scholar 

  58. Mahanti S, Das S, Behera BK, Panigrahi PK. Quantum robots can fly; play games: an IBM quantum experience. Quantum Inf Process. 2019;18(7):219.

    Article  Google Scholar 

  59. Kagan E, Ben-Gal I. Navigation of quantum-controlled mobile robots. In: Recent advances in mobile robotics. London, UK: IntechOpen; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Atallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atallah, S., Atallah, A.B. (2021). Quantum Theory and Computing for Surgeons. In: Atallah, S. (eds) Digital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49100-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49099-7

  • Online ISBN: 978-3-030-49100-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation