A Compressive Spectral Collocation Method for the Diffusion Equation Under the Restricted Isometry Property

  • Chapter
  • First Online:
Quantification of Uncertainty: Improving Efficiency and Technology

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137 ))

  • 526 Accesses

Abstract

We propose a compressive spectral collocation method for the numerical approximation of Partial Differential Equations (PDEs). The approach is based on a spectral Sturm-Liouville approximation of the solution and on the collocation of the PDE in strong form at randomized points, by taking advantage of the compressive sensing principle. The proposed approach makes use of a number of collocation points substantially less than the number of basis functions when the solution to recover is sparse or compressible. Focusing on the case of the diffusion equation, we prove that, under suitable assumptions on the diffusion coefficient, the matrix associated with the compressive spectral collocation approach satisfies the restricted isometry property of compressive sensing with high probability. Moreover, we demonstrate the ability of the proposed method to reduce the computational cost associated with the corresponding full spectral collocation approach while preserving good accuracy through numerical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The substantial independence of the OMP recovery cost with respect to s for the full approach depends on two factors: the particular implementation of OMP in the package OMP-Box and the normalization step \(\widetilde {A} = A M^{-1}\) in Algorithm 1. In fact, in order to speed up the OMP iteration, the function omp of OMP-Box used to produce these results takes \(\widetilde {A}^T\widetilde {A}\) as input. When A is N × N, the cost of computing the matrices \(\widetilde {A}\) and \(\widetilde {A}^T\widetilde {A}\) is independent of s and it turns out to be consistently larger than the cost of OMP itself. As a result, the effect of s on the overall computational cost is negligible. The same remark holds for Fig. 4.

References

  1. Adcock, B.: Univariate modified fourier methods for second order boundary value problems. BIT Numer. Math. 49(2), 49–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adcock, B.: Multivariate modified Fourier series and application to boundary value problems. Numer. Math. 115(4), 511–552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adcock, B., Brugiapaglia, S., Webster, C.G.: Compressed sensing approaches for polynomial approximation of high-dimensional functions. In: Compressed Sensing and its Applications, pp. 93–124. Springer, Cham (2017)

    Google Scholar 

  4. Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements (2017). Preprint. ar**v:1710.11093

    Google Scholar 

  5. Bouchot, J.-L., Rauhut, H., Schwab, C.: Multi-level compressed sensing Petrov-Galerkin discretization of high-dimensional parametric PDEs (2017). Preprint. ar**v:1701.01671

    Google Scholar 

  6. Brugiapaglia, S.: COmpRessed SolvING: sparse approximation of PDEs based on compressed sensing. PhD thesis, Politecnico di Milano, Italy (2016)

    Google Scholar 

  7. Brugiapaglia, S., Micheletti, S., Perotto, S.: Compressed solving: a numerical approximation technique for elliptic PDEs based on compressed sensing. Comput. Math. Appl. 70(6), 1306–1335 (2015)

    Article  MathSciNet  Google Scholar 

  8. Brugiapaglia, S., Nobile, F., Micheletti, S., Perotto, S.: A theoretical study of COmpRessed SolvING for advection-diffusion-reaction problems. Math. Comput. 87(309), 1–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Zhang, T.A.: Spectral Methods in Fluid Dynamics. Springer Science & Business Media, New York (2012)

    Google Scholar 

  11. Chkifa, A., Dexter, N., Tran, H., Webster, C.G.: Polynomial approximation via compressed sensing of high-dimensional functions on lower sets. Math. Comput. 87(311), 1415 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daubechies, I., Runborg, O., Zou, J.: A sparse spectral method for homogenization multiscale problems. Multiscale Model. Simul. 6(3), 711–740 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser, Basel (2013)

    Google Scholar 

  16. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  17. Guermond, J.-L.: A finite element technique for solving first-order PDEs in L p. SIAM J. Numer. Anal. 42(2), 714–737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guermond, J.-L., Popov, B.: An optimal L 1-minimization algorithm for stationary Hamilton-Jacobi equations. Commun. Math. Sci. 7(1), 211–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: modified Fourier expansions. IMA J. Numer. Anal. 28(4), 862–887 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation III: multivariate expansions. IMA J. Numer. Anal. 29(4), 882–916 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jokar, S., Mehrmann, V., Pfetsch, M.E., Yserentant, H.: Sparse approximate solution of partial differential equations. Appl. Numer. Math. 60(4), 452–472 (2010). Special Issue: NUMAN 2008

    Google Scholar 

  22. Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lavery, J.E.: Nonoscillatory solution of the steady-state inviscid Burgers’ equation by mathematical programming. J. Comput. Phys. 79(2), 436–448 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lavery, J.E.: Solution of steady-state one-dimensional conservation laws by mathematical programming. SIAM J. Numer. Anal. 26(5), 1081–1089 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mackey, A., Schaeffer, H., Osher, S.: On the compressive spectral method. Multiscale Model. Simul. 12(4), 1800–1827 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mathelin, L., Gallivan, K.A.: A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng, J., Hampton, J., Doostan, A.: A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267, 92–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rauhut, H., Schwab, C.: Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. Math. Comput. 86(304), 661–700 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical report, Computer Science Department, Technion (2008)

    Google Scholar 

  30. Schaeffer, H., Caflisch, R., Hauck, C.D., Osher, S.: Sparse dynamics for partial differential equations. Proc. Natl. Acad. Sci. 110(17), 6634–6639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Temlyakov, V.N.: Nonlinear methods of approximation. Found. Comput. Math. 3(1), 33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15(3), 1108–1129 (2017)

    Article  MathSciNet  Google Scholar 

  33. Yang, X., Karniadakis, G.E.: Reweighted 1 minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248, 87–108 (2013)

    Article  MATH  Google Scholar 

  34. Zhang, T.: Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inf. Theory 57(9), 6215–6221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada through grant number 611675 and the Pacific Institute for the Mathematical Sciences (PIMS) through the program “PIMS Postdoctoral Training Centre in Stochastics”. Moreover, the author gratefully acknowledge Ben Adcock and the anonymous reviewer for providing helpful comments on the first version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Brugiapaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 National Technology & Engineering Solutions of Sandia, and The Editor(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brugiapaglia, S. (2020). A Compressive Spectral Collocation Method for the Diffusion Equation Under the Restricted Isometry Property. In: D'Elia, M., Gunzburger, M., Rozza, G. (eds) Quantification of Uncertainty: Improving Efficiency and Technology. Lecture Notes in Computational Science and Engineering, vol 137 . Springer, Cham. https://doi.org/10.1007/978-3-030-48721-8_2

Download citation

Publish with us

Policies and ethics

Navigation