A Blockchain Based Distributed Vehicular Network Architecture for Smart Cities

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

In this paper, we propose a blockchain-based data sharing mechanism for Vehicular Network. We introduce edge service providers placed near to ordinary vehicle nodes to fulfill their requests. Smart vehicles generate a huge amount of data which is stored in the Interplanetary File System (IPFS). IPFS is a distributed file storage system that overcomes the limitations of centralized architecture. Monetary incentive is given to edge vehicle nodes for providing services to ordinary nodes. Ordinary nodes give reviews against services provided by the edge nodes that are stored in a blockchain. A smart contract is used to automate system processes without third party involvement and checking reviews of the edge node. To optimize gas consumption, we used Proof of Authority (PoA) as a consensus mechanism for transaction validation. PoA enhances overall system performance and optimized gas consumption. The caching server is introduced to store frequently used services in memory and provided to ordinary vehicles upon request. Moreover, we have used symmetric key cryptographic mechanism which ensures data security and privacy. A trust management system is proposed, which ensures the reputation of nodes. The trust value is stored in a blockchain, which determines the authenticity of nodes involved in a network. From simulation results, it is shown that our proposed system is efficient for the vehicular network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartenstein, H., Laberteaux, K.: VANET: vehicular applications and inter-networking technologies, vol. 1. Wiley, Chichester (2010)

    Book  Google Scholar 

  2. Allied Market Research: Autonomous Vehicle Market by Level of Automation (2018). https://www.alliedmarketresearch.com/autonomous-vehicle-market. Accessed 18 Nov 2019

  3. Xu, Y., Wang, G., Yang, J., Ren, J., Zhang, Y., Zhang, C.: Towards secure network computing services for lightweight clients using blockchain. Wirel. Commun. Mob. Comput. 2018, 12 (2018)

    Article  Google Scholar 

  4. Sharma, P.K., Park, J.H.: Blockchain based hybrid network architecture for the smart city. Future Gener. Comput. Syst. 86, 650–655 (2018)

    Article  Google Scholar 

  5. Sharma, P.K., Moon, S.Y., Park, J.H.: Block-VN: a distributed blockchain based vehicular network architecture in smart City. JIPS 13(1), 184–195 (2017)

    Google Scholar 

  6. Qu, C., Tao, M., Zhang, J., Hong, X., Yuan, R.: Blockchain based credibility verification method for IoT entities. Secur. Commun. Netw. 2018, 11 (2018)

    Article  Google Scholar 

  7. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access 6, 38437–38450 (2018)

    Article  Google Scholar 

  8. Ding, S., Cao, J., Li, C., Fan, K., Li, H.: A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)

    Article  Google Scholar 

  9. Zhang, G., Li, T., Li, Y., Hui, P., **, D.: Blockchain-based data sharing system for AI-powered network operations. J. Commun. Inf. Netw. 3(3), 1–8 (2018)

    Article  Google Scholar 

  10. Zhang, Y., Wen, J.: The IoT electric business model: using blockchain technology for the Internet of Things. Peer Peer Netw. Appl. 10(4), 983–994 (2017)

    Article  Google Scholar 

  11. Singh, M., Kim, S.: Branch based blockchain technology in intelligent vehicle. Comput. Netw. 145, 219–231 (2018)

    Article  Google Scholar 

  12. Jia, B., Zhou, T., Li, W., Liu, Z., Zhang, J.: A blockchain-based location privacy protection incentive mechanism in crowd sensing networks. Sensors 18(11), 3894 (2018)

    Article  Google Scholar 

  13. Jiang, T., Fang, H., Wang, H.: Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 6, 4640–4649 (2018)

    Article  Google Scholar 

  14. Novo, O.: Scalable access management in IoT using blockchain: a performance evaluation. IEEE Internet Things J. 6, 4694–4701 (2018)

    Article  Google Scholar 

  15. Samuel, O., Javaid, N., Awais, M., Ahmed, Z., Imran, M., Guizani, M.: A blockchain model for fair data sharing in deregulated smart grids. In: IEEE Global Communications Conference (GLOBCOM 2019) (2019)

    Google Scholar 

  16. Rehman, M., Javaid, N., Awais, M., Imran, M., Naseer, N.: Cloud based secure service providing for IoTs using blockchain. In: IEEE Global Communications Conference (GLOBCOM 2019) (2019)

    Google Scholar 

  17. Sultana, T., Almogren, A., Akbar, M., Zuair, M., Ullah, I., Javaid, N.: Data sharing system integrating access control mechanism using blockchain-based smart contracts for IoT devices. Appl. Sci. 10(2), 488 (2020)

    Article  Google Scholar 

  18. Naz, M., Al-zahrani, F.A., Khalid, R., Javaid, N., Qamar, A.M., Afzal, M.K., Shafiq, M.: A secure data sharing platform using blockchain and interplanetary file system. Sustainability 11(24), 7054 (2019)

    Article  Google Scholar 

  19. Alghamdi, T.A., Ali, I., Javaid, N., Shafiq, M.: Secure service provisioning scheme for lightweight IoT devices with a fair payment system and an incentive mechanism based on blockchain. IEEE Access 8, 1048–1061 (2019)

    Article  Google Scholar 

  20. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Javaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rehman, M. et al. (2020). A Blockchain Based Distributed Vehicular Network Architecture for Smart Cities. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_29

Download citation

Publish with us

Policies and ethics

Navigation