Adult Versus Paediatric Craniopharyngiomas: Which Differences?

  • Chapter
  • First Online:
Adult Craniopharyngiomas

Abstract

Despite some apparent similarities several differences exist between adult and paediatric craniopharyngiomas starting from the histology. Papillary CPs occur almost exclusively in adults, whereas adamantinomatous CPs can occur in a bimodal age distribution but have been found in any age group. Adamantinomatous CPs tend to be more complicated lesions consisting of large cysts, areas of calcifications and can form strong adhesions to surrounding neurovascular structures. Moreover, children have a unique set of physiological and anatomical factors that can restrict surgical access. They also tend to fair less favourably in long-term outcomes. In this chapter we will discuss these points in an attempt to compare and contrast paediatric and adult craniopharyngiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 53.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. In: Fred T. Bosman ESJ, Lakhani SR, Ohgaki H, editors. WHO classification of tumours of the central nervous system. 4th ed. Lyon: IARC; 2007. p. 309.

    Google Scholar 

  2. Sofela AA, et al. Malignant transformation in craniopharyngiomas. Neurosurgery. 2014;75:306.

    Article  PubMed  Google Scholar 

  3. Nielsen EH, et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neuro-Oncol. 2011;104:755.

    Article  CAS  Google Scholar 

  4. Zacharia BE, et al. Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. Neuro-Oncology. 2012;14(8):1070–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dohrmann GJ, Farwell JR. Intracranial neoplasms in children: a comparison of North America, Europe, Africa, and Asia. Dis Nerv Syst. 1976;37(12):696–7.

    CAS  PubMed  Google Scholar 

  6. Haupt R, et al. Epidemiological aspects of craniopharyngioma. J Pediatr Endocrinol Metab. 2006;19(Suppl 1):289–93.

    PubMed  Google Scholar 

  7. Wang L, et al. Primary adult infradiaphragmatic craniopharyngiomas: clinical features, management, and outcomes in one Chinese institution. World Neurosurg. 2014;81(5-6):773–82.

    Article  PubMed  Google Scholar 

  8. Qi S, et al. Anatomic relations of the arachnoidea around the pituitary stalk: relevance for surgical removal of craniopharyngiomas. Acta Neurochir. 2011;153(4):785–96.

    Article  PubMed  Google Scholar 

  9. Davis SW, et al. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol. 2013;106:1–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prabhu VC, Brown HG. The pathogenesis of craniopharyngiomas. Childs Nerv Syst. 2005;21(8-9):622–7.

    Article  PubMed  Google Scholar 

  11. Bao Y, et al. Origin of craniopharyngiomas: implications for growth pattern, clinical characteristics, and outcomes of tumor recurrence. J Neurosurg. 2016;125(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  12. Prieto R, et al. Craniopharyngioma adherence: a reappraisal of the evidence. Neurosurg Rev. 2018. https://doi.org/10.1007/s10143-018-1010-9.

  13. Ciappetta P, Pescatori L. Anatomic dissection of arachnoid membranes encircling the pituitary stalk on fresh, non-formalin-fixed specimens: anatomoradiologic correlations and clinical applications in craniopharyngioma surgery. World Neurosurg. 2017;108:479–90.

    Article  PubMed  Google Scholar 

  14. Pascual JM, Prieto R, Carrasco R. Infundibulo-tuberal or not strictly intraventricular craniopharyngioma: evidence for a major topographical category. Acta Neurochir. 2011;153(12):2403–25; discussion 2426.

    Article  PubMed  Google Scholar 

  15. Nielsen EH, et al. Acute presentation of craniopharyngioma in children and adults in a Danish national cohort. Pituitary. 2013;16(4):528–35.

    Article  CAS  PubMed  Google Scholar 

  16. Daubenbuchel AM, et al. Hydrocephalus and hypothalamic involvement in pediatric patients with craniopharyngioma or cysts of Rathke’s pouch: impact on long-term prognosis. Eur J Endocrinol. 2015;172(5):561–9.

    Article  CAS  PubMed  Google Scholar 

  17. Elliott RE, Wisoff JH. Surgical management of giant pediatric craniopharyngiomas. J Neurosurg Pediatr. 2010;6(5):403–16.

    Article  PubMed  Google Scholar 

  18. Schlaffer SM, et al. Rathke’s cleft cyst as origin of a pediatric papillary craniopharyngioma. Front Genet. 2018;9:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Borrill R, et al. Papillary craniopharyngioma in a 4-year-old girl with BRAF V600E mutation: a case report and review of the literature. Childs Nerv Syst. 2019;35:169.

    Article  CAS  PubMed  Google Scholar 

  20. Apps JR, Martinez-Barbera JP. Molecular pathology of adamantinomatous craniopharyngioma: review and opportunities for practice. Neurosurg Focus. 2016;41(6):E4.

    Article  PubMed  Google Scholar 

  21. Sekine S, et al. Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology. 2004;45(6):573–9.

    Article  CAS  PubMed  Google Scholar 

  22. Larkin SJ, Ansorge O. Pathology and pathogenesis of craniopharyngiomas. Pituitary. 2013;16(1):9–17.

    Article  PubMed  Google Scholar 

  23. Schweizer L, et al. BRAF V600E analysis for the differentiation of papillary craniopharyngiomas and Rathke’s cleft cysts. Neuropathol Appl Neurobiol. 2015;41(6):733–42.

    Article  CAS  PubMed  Google Scholar 

  24. Brastianos PK, Santagata S. Endocrine tumors: BRAF V600E mutations in papillary craniopharyngioma. Eur J Endocrinol. 2016;174(4):R139–44.

    Article  CAS  PubMed  Google Scholar 

  25. Malgulwar PB, et al. Study of beta-catenin and BRAF alterations in adamantinomatous and papillary craniopharyngiomas: mutation analysis with immunohistochemical correlation in 54 cases. J Neuro-Oncol. 2017;133(3):487–95.

    Article  CAS  Google Scholar 

  26. Holsken A, et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun. 2016;4:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hussain I, et al. Molecular oncogenesis of craniopharyngioma: current and future strategies for the development of targeted therapies. J Neurosurg. 2013;119(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshimoto K, et al. High-resolution melting and immunohistochemical analysis efficiently detects mutually exclusive genetic alterations of adamantinomatous and papillary craniopharyngiomas. Neuropathology. 2018;38(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  29. Gao C, et al. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget. 2018;9(4):5492–508.

    PubMed  Google Scholar 

  30. Yang Y. Wnt signaling in development and disease. Cell Biosci. 2012;2(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Apps JR, et al. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol. 2018;135(5):757–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Preda V, et al. The Wnt signalling cascade and the adherens junction complex in craniopharyngioma tumorigenesis. Endocr Pathol. 2015;26(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Burghaus S, et al. A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch. 2010;456(3):287–300.

    Article  PubMed  Google Scholar 

  34. Stache C, et al. Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro-Oncology. 2014;16(2):256–64.

    Article  CAS  PubMed  Google Scholar 

  35. Massimi L, et al. Proteomics in pediatric cystic craniopharyngioma. Brain Pathol. 2017;27(3):370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martelli C, et al. Proteomic characterization of pediatric craniopharyngioma intracystic fluid by LC-MS top-down/bottom-up integrated approaches. Electrophoresis. 2014;35(15):2172–83.

    CAS  PubMed  Google Scholar 

  37. Benveniste EN, Qin H. Type I interferons as anti-inflammatory mediators. Sci STKE. 2007;2007(416):pe70.

    Article  PubMed  Google Scholar 

  38. Falini B, Martelli MP, Tiacci E. BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood. 2016;128(15):1918–27.

    Article  CAS  PubMed  Google Scholar 

  39. Brastianos PK, et al. Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst. 2016;108(2):djv310.

    Article  PubMed  CAS  Google Scholar 

  40. Himes BT, et al. Recurrent papillary craniopharyngioma with BRAF V600E mutation treated with dabrafenib: case report. J Neurosurg. 2018;130:1299–303.

    Article  Google Scholar 

  41. Jung TY, et al. Adult craniopharyngiomas: surgical results with a special focus on endocrinological outcomes and recurrence according to pituitary stalk preservation. J Neurosurg. 2009;111(3):572–7.

    Article  PubMed  Google Scholar 

  42. Cheng J, Fan Y, Cen B. Effect of preserving the pituitary stalk during resection of craniopharyngioma in children on the diabetes insipidus and relapse rates and long-term outcomes. J Craniofac Surg. 2017;28(6):e591–5.

    Article  PubMed  Google Scholar 

  43. Li K, et al. Association of pituitary stalk management with endocrine outcomes and recurrence in microsurgery of craniopharyngiomas: a meta-analysis. Clin Neurol Neurosurg. 2015;136:20–4.

    Article  PubMed  Google Scholar 

  44. Jung TY, et al. Endocrinological outcomes of pediatric craniopharyngiomas with anatomical pituitary stalk preservation: preliminary study. Pediatr Neurosurg. 2010;46(3):205–12.

    Article  PubMed  Google Scholar 

  45. Steinbok P, Hukin J. Intracystic treatments for craniopharyngioma. Neurosurg Focus. 2010;28(4):E13.

    Article  PubMed  Google Scholar 

  46. Qiao N. Endocrine outcomes of endoscopic versus transcranial resection of craniopharyngiomas: a system review and meta-analysis. Clin Neurol Neurosurg. 2018;169:107–15.

    Article  PubMed  Google Scholar 

  47. Alotaibi NM, et al. Physiologic growth hormone-replacement therapy and craniopharyngioma recurrence in pediatric patients: a meta-analysis. World Neurosurg. 2018;109:487–496.e1.

    Article  PubMed  Google Scholar 

  48. Smith TR, et al. Physiological growth hormone replacement and rate of recurrence of craniopharyngioma: the Genentech National Cooperative Growth Study. J Neurosurg Pediatr. 2016;18(4):408–12.

    Article  PubMed  Google Scholar 

  49. Shen L, et al. Growth hormone therapy and risk of recurrence/progression in intracranial tumors: a meta-analysis. Neurol Sci. 2015;36(10):1859–67.

    Article  PubMed  Google Scholar 

  50. Kilday JP, et al. Intracystic interferon-alpha in pediatric craniopharyngioma patients: an international multicenter assessment on behalf of SIOPE and ISPN. Neuro-Oncology. 2017;19(10):1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bock RD. Multiple prepubertal growth spurts in children of the Fels Longitudinal Study: comparison with results from the Edinburgh Growth Study. Ann Hum Biol. 2004;31(1):59–74.

    Article  CAS  PubMed  Google Scholar 

  52. Butler GE, McKie M, Ratcliffe SG. The cyclical nature of prepubertal growth. Ann Hum Biol. 1990;17(3):177–98.

    Article  CAS  PubMed  Google Scholar 

  53. Guadagno E, et al. Can recurrences be predicted in craniopharyngiomas? beta-catenin coexisting with stem cells markers and p-ATM in a clinicopathologic study of 45 cases. J Exp Clin Cancer Res. 2017;36(1):95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Coury JR, et al. Histopathological and molecular predictors of growth patterns and recurrence in craniopharyngiomas: a systematic review. Neurosurg Rev. 2018. https://doi.org/10.1007/s10143-018-0978-5.

  55. Dandurand C, et al. Adult craniopharyngioma: case series, systematic review, and meta-analysis. Neurosurgery. 2018;83:631.

    Article  PubMed  Google Scholar 

  56. Clark AJ, et al. A systematic review of the results of surgery and radiotherapy on tumor control for pediatric craniopharyngioma. Childs Nerv Syst. 2013;29(2):231–8.

    Article  PubMed  Google Scholar 

  57. Du C, et al. Ectopic recurrence of pediatric craniopharyngiomas after gross total resection: a report of two cases and a review of the literature. Childs Nerv Syst. 2016;32(8):1523–9.

    Article  PubMed  Google Scholar 

  58. Gillis J, Loughlan P. Not just small adults: the metaphors of paediatrics. Arch Dis Child. 2007;92(11):946–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patel VS, et al. Outcomes after endoscopic endonasal resection of craniopharyngiomas in the pediatric population. World Neurosurg. 2017;108:6–14.

    Article  PubMed  Google Scholar 

  60. Alalade AF, et al. Suprasellar and recurrent pediatric craniopharyngiomas: expanding indications for the extended endoscopic transsphenoidal approach. J Neurosurg Pediatr. 2018;21(1):72–80.

    Article  PubMed  Google Scholar 

  61. Cavallo LM, et al. The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients. J Neurosurg. 2014;121(1):100–13.

    Article  PubMed  Google Scholar 

  62. Jang YJ, Kim SC. Pneumatization of the sphenoid sinus in children evaluated by magnetic resonance imaging. Am J Rhinol. 2000;14(3):181–5.

    Article  CAS  PubMed  Google Scholar 

  63. Wijnen M, et al. Excess morbidity and mortality in patients with craniopharyngioma: a hospital-based retrospective cohort study. Eur J Endocrinol. 2018;178(1):95–104.

    Google Scholar 

  64. Olsson DS, et al. Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J Clin Endocrinol Metab. 2015;100(2):467–74.

    Article  CAS  PubMed  Google Scholar 

  65. Park SW, et al. Tumor origin and growth pattern at diagnosis and surgical hypothalamic damage predict obesity in pediatric craniopharyngioma. J Neuro-Oncol. 2013;113(3):417–24.

    Article  Google Scholar 

  66. van Iersel L, et al. The development of hypothalamic obesity in craniopharyngioma patients: a risk factor analysis in a well-defined cohort. Pediatr Blood Cancer. 2018;65(5):e26911.

    Article  PubMed  Google Scholar 

  67. Muller HL. Hypothalamic involvement in craniopharyngioma-Implications for surgical, radiooncological, and molecularly targeted treatment strategies. Pediatr Blood Cancer. 2018;65(5):e26936.

    Article  PubMed  Google Scholar 

  68. Puget S, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg. 2007;106(1 Suppl):3–12.

    PubMed  Google Scholar 

  69. Van Gompel JJ, et al. Magnetic resonance imaging–graded hypothalamic compression in surgically treated adult craniopharyngiomas determining postoperative obesity. Neurosurg Focus. 2010;28(4):E3.

    Article  PubMed  Google Scholar 

  70. Muller HL, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  71. Muller HL, et al. Xanthogranuloma, Rathke’s cyst, and childhood craniopharyngioma: results of prospective multinational studies of children and adolescents with rare sellar malformations. J Clin Endocrinol Metab. 2012;97(11):3935–43.

    Article  PubMed  CAS  Google Scholar 

  72. Pascual JM, et al. Displacement of mammillary bodies by craniopharyngiomas involving the third ventricle: surgical-MRI correlation and use in topographical diagnosis. J Neurosurg. 2013;119(2):381–405.

    Article  PubMed  Google Scholar 

  73. Prieto R, et al. Preoperative assessment of craniopharyngioma adherence: magnetic resonance imaging findings correlated with the severity of tumor attachment to the hypothalamus. World Neurosurg. 2018;110:e404–26.

    Article  PubMed  Google Scholar 

  74. Colquitt JL, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014(8):Cd003641. https://doi.org/10.1002/14651858.CD003641.pub4.

  75. Holmer H, et al. Reduced energy expenditure and impaired feeding-related signals but not high energy intake reinforces hypothalamic obesity in adults with childhood onset craniopharyngioma. J Clin Endocrinol Metab. 2010;95(12):5395–402.

    Article  CAS  PubMed  Google Scholar 

  76. Geerling JC, et al. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol. 2010;518(9):1460–99.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Haliloglu B, Bereket A. Hypothalamic obesity in children: pathophysiology to clinical management. J Pediatr Endocrinol Metab. 2015;28(5-6):503–13.

    Article  PubMed  Google Scholar 

  78. Nagai K, et al. SCN output drives the autonomic nervous system: with special reference to the autonomic function related to the regulation of glucose metabolism. Prog Brain Res. 1996;111:253–72.

    Article  CAS  PubMed  Google Scholar 

  79. Harz KJ, et al. Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. J Clin Endocrinol Metab. 2003;88(11):5227–31.

    Article  CAS  PubMed  Google Scholar 

  80. Castro-Dufourny I, Carrasco R, Pascual JM. Hypothalamic obesity after craniopharyngioma surgery: treatment with a long acting glucagon like peptide 1 derivated. Endocrinol Diabetes Nutr (English ed). 2017;64(3):182–4.

    Article  Google Scholar 

  81. Hamilton JK, et al. Hypothalamic obesity following craniopharyngioma surgery: results of a pilot trial of combined diazoxide and metformin therapy. Int J Pediatr Endocrinol. 2011;2011:1–7.

    Article  CAS  Google Scholar 

  82. Ni W, Shi X. Interventions for the treatment of craniopharyngioma-related hypothalamic obesity: a systematic review. World Neurosurg. 2018;118:e59.

    Article  PubMed  Google Scholar 

  83. McCarty CA, Nanjan MB, Taylor HR. Vision impairment predicts 5 year mortality. Br J Ophthalmol. 2001;85(3):322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jacobsen MF, et al. Predictors of visual outcome in patients operated for craniopharyngioma - a Danish national study. Acta Ophthalmol. 2018;96(1):39–45.

    Article  PubMed  Google Scholar 

  85. Drimtzias E, et al. The ophthalmic natural history of paediatric craniopharyngioma: a long-term review. J Neuro-Oncol. 2014;120(3):651–6.

    Article  Google Scholar 

  86. Wan MJ, et al. Long-term visual outcomes of craniopharyngioma in children. J Neuro-Oncol. 2018;137(3):645–51.

    Article  Google Scholar 

  87. Astradsson A, et al. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults: findings in a prospective cohort. Acta Oncol. 2017;56(3):415–21.

    Article  PubMed  Google Scholar 

  88. Abrams LS, Repka MX. Visual outcome of craniopharyngioma in children. J Pediatr Ophthalmol Strabismus. 1997;34(4):223–8.

    CAS  PubMed  Google Scholar 

  89. Lee MJ, Hwang J-M. Initial visual field as a predictor of recurrence and postoperative visual outcome in children with craniopharyngioma. J Pediatr Ophthalmol Strabismus. 2012;49:38.

    Article  PubMed  Google Scholar 

  90. Prieto R, Pascual JM, Barrios L. Optic chiasm distortions caused by craniopharyngiomas: clinical and magnetic resonance imaging correlation and influence on visual outcome. World Neurosurg. 2015;83(4):500–29.

    Article  PubMed  Google Scholar 

  91. Danesh-Meyer HV, et al. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008;49(5):1879–85.

    Article  PubMed  Google Scholar 

  92. Bialer OY, et al. Retinal NFL thinning on OCT correlates with visual field loss in pediatric craniopharyngioma. Can J Ophthalmol. 2013;48(6):494–9.

    Article  PubMed  Google Scholar 

  93. Mediero S, et al. Visual outcomes, visual fields, and optical coherence tomography in paediatric craniopharyngioma. Neuroophthalmology. 2015;39(3):132–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Barbosa DAN, et al. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus. 2017;43(3):E15.

    Article  PubMed  Google Scholar 

  95. Ozyurt J, Muller HL, Thiel CM. A systematic review of cognitive performance in patients with childhood craniopharyngioma. J Neuro-Oncol. 2015;125(1):9–21.

    Article  Google Scholar 

  96. Fjalldal S, et al. Hypothalamic involvement predicts cognitive performance and psychosocial health in long-term survivors of childhood craniopharyngioma. J Clin Endocrinol Metab. 2013;98(8):3253–62.

    Article  CAS  PubMed  Google Scholar 

  97. Memmesheimer RM, et al. Psychological well-being and independent living of young adults with childhood-onset craniopharyngioma. Dev Med Child Neurol. 2017;59(8):829–36.

    Article  PubMed  Google Scholar 

  98. Ondruch A, et al. Cognitive and social functioning in children and adolescents after the removal of craniopharyngioma. Childs Nerv Syst. 2010;27(3):391–7.

    Article  PubMed  Google Scholar 

  99. Pascual JM, et al. Craniopharyngiomas primarily involving the hypothalamus: a model of neurosurgical lesions to elucidate the neurobiological basis of psychiatric disorders. World Neurosurg. 2018;120:e1245.

    Article  PubMed  Google Scholar 

  100. Hoffmann A, et al. First experiences with neuropsychological effects of oxytocin administration in childhood-onset craniopharyngioma. Endocrine. 2017;56(1):175–85.

    Article  CAS  PubMed  Google Scholar 

  101. Daubenbuchel AM, et al. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine. 2016;54(2):524–31.

    Article  PubMed  CAS  Google Scholar 

  102. Dillingham CM, et al. How do mammillary body inputs contribute to anterior thalamic function? Neurosci Biobehav Rev. 2015;54:108–19.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vann SD, Nelson AJ. The mammillary bodies and memory: more than a hippocampal relay. Prog Brain Res. 2015;219:163–85.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tanaka Y, et al. Amnesia following damage to the mammillary bodies. Neurology. 1997;48(1):160–5.

    Article  CAS  PubMed  Google Scholar 

  105. Savastano LE, et al. Korsakoff syndrome from retrochiasmatic suprasellar lesions: rapid reversal after relief of cerebral compression in 4 cases. J Neurosurg. 2018;128(6):1731–6.

    Article  PubMed  Google Scholar 

  106. Kahn EA, Crosby EC. Korsakoff’s syndrome associated with surgical lesions involving the mammillary bodies. Neurology. 1972;22(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  107. Crom DB, et al. Health status in long-term survivors of pediatric craniopharyngiomas. J Neurosci Nurs. 2010;42(6):323–8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Poretti A, et al. Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev Med Child Neurol. 2004;46(4):220–9.

    Article  PubMed  Google Scholar 

  109. Pedreira CC, et al. Health related quality of life and psychological outcome in patients treated for craniopharyngioma in childhood. J Pediatr Endocrinol Metab. 2006;19(1):15.

    Article  CAS  PubMed  Google Scholar 

  110. Laffond C, et al. Quality-of-life, mood and executive functioning after childhood craniopharyngioma treated with surgery and proton beam therapy. Brain Inj. 2012;26(3):270–81.

    Article  CAS  PubMed  Google Scholar 

  111. Heinks K, et al. Quality of life and growth after childhood craniopharyngioma: results of the multinational trial KRANIOPHARYNGEOM 2007. Endocrine. 2018;59(2):364–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Di Rocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweeney, K.J., Mottolese, C., Villanueva, C., Beuriat, P.A., Szathmari, A., Di Rocco, F. (2020). Adult Versus Paediatric Craniopharyngiomas: Which Differences?. In: Jouanneau, E., Raverot, G. (eds) Adult Craniopharyngiomas. Springer, Cham. https://doi.org/10.1007/978-3-030-41176-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41176-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41175-6

  • Online ISBN: 978-3-030-41176-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation