Hardness and Approximation for the Geodetic Set Problem in Some Graph Classes

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12016))

Included in the following conference series:

Abstract

In this paper, we study the computational complexity of finding the geodetic number of graphs. A set of vertices S of a graph G is a geodetic set if any vertex of G lies in some shortest path between some pair of vertices from S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality. In this paper, we prove that solving MGS is NP-hard on planar graphs with a maximum degree six and line graphs. We also show that unless \(P=NP\), there is no polynomial time algorithm to solve MGS with sublogarithmic approximation factor (in terms of the number of vertices) even on graphs with diameter 2. On the positive side, we give an \(O\left( \root 3 \of {n}\log n\right) \)-approximation algorithm for MGS on general graphs of order n. We also give a 3-approximation algorithm for MGS on solid grid graphs which are planar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79(5), 587–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckley, F., Harary, F.: Geodetic games for graphs. Quaestiones Math. 8(4), 321–334 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bueno, L.R., Penso, L.D., Protti, F., Ramos, V.R., Rautenbach, D., Souza, U.S.: On the hardness of finding the geodetic number of a subcubic graph. Inf. Process. Lett. 135, 22–27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Călinescu, G., Dumitrescu, A., Pach, J.: Reconfigurations in graphs and grids. SIAM J. Discrete Math. 22(1), 124–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebík, M., Chlebíková, J.: Approximation hardness of dominating set problems in bounded degree graphs. Inf. Comput. 206(11), 1264–1275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuzhoy, J., Kim, D.H.K.: On approximating node-disjoint paths in grids. In: APPROX/RANDOM, pp. 187–211. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp. 624–633. ACM (2014)

    Google Scholar 

  8. Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Math. 310(4), 832–837 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: On the complexity of the geodetic and convexity numbers of a graph. In: ICDM, vol. 7, pp. 101–108. Ramanujan Mathematical Society (2008)

    Google Scholar 

  10. Ekim, T., Erey, A.: Block decomposition approach to compute a minimum geodetic set. RAIRO-Oper. Res. 48(4), 497–507 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ekim, T., Erey, A., Heggernes, P., van’t Hof, P., Meister, D.: Computing minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29344-3_24

    Chapter  Google Scholar 

  12. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7(3), 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H.Freeman, New York (2002)

    Google Scholar 

  14. Gerber, M.U., Lozin, V.V.: Robust algorithms for the stable set problem. Graphs Comb. 19(3), 347–356 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerstel, O., Zaks, S.: A new characterization of tree medians with applications to distributed sorting. Networks 24(1), 23–29 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gregori, A.: Unit-length embedding of binary trees on a square grid. Inf. Process. Lett. 31(4), 167–173 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guruswami, V.: Maximum cut on line and total graphs. Discrete Appl. Math. 92(2–3), 217–221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Modell. 17(11), 89–95 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haynes, T.W., Henning, M., Tiller, C.A.: Geodetic achievement and avoidance games for graphs. Quaestiones Math. 26(4), 389–397 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mezzini, M.: Polynomial time algorithm for computing a minimum geodetic set in outerplanar graphs. Theoret. Comput. Sci. 745, 63–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mitchell, S.L.: Another characterization of the centroid of a tree. Discrete Math. 24(3), 277–280 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sardroud, A.A., Bagheri, A.: An approximation algorithm for the longest cycle problem in solid grid graphs. Discrete Appl. Math. 204, 6–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tirodkar, S., Vishwanathan, S.: On the approximability of the minimum rainbow subgraph problem and other related problems. Algorithmica 79(3), 909–924 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, B.Y.: A 7/6-approximation algorithm for the max-min connected bipartition problem on grid graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 188–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24983-9_19

    Chapter  Google Scholar 

  26. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, W., Liu, Y.: Approximating the longest paths in grid graphs. Theoret. Comput. Sci. 412(39), 5340–5350 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39). Florent Foucaud is supported by the ANR project HOSIGRA (ANR-17-CE40-0022). We thank Ajit Diwan for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmender Gahlawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, D., Foucaud, F., Gahlawat, H., Ghosh, S.K., Roy, B. (2020). Hardness and Approximation for the Geodetic Set Problem in Some Graph Classes. In: Changat, M., Das, S. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2020. Lecture Notes in Computer Science(), vol 12016. Springer, Cham. https://doi.org/10.1007/978-3-030-39219-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39219-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39218-5

  • Online ISBN: 978-3-030-39219-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation