Stability of Hydrogenated Amorphous Silicon Diodes as Thin Film Temperature Sensors

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

  • 747 Accesses

Abstract

This work reports on the characterization of stability of amorphous silicon diodes used as temperature sensors in lab-on-chip systems. We found that under constant forward current injection, the voltage drop over the diode changes depending on the values of current and injection time. The optimized operating conditions for practical applications have been established on the base of the obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  ADS  Google Scholar 

  2. Lafleur J, Jonsson A, Senkbeil S, Kutter J (2016) Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 76:213–233

    Article  Google Scholar 

  3. Fasolato C, Giantulli S, Silvestri I, Mazzarda F, Toumia Y, Ripanti F, Mura F, Luongo F, Costantini F, Bordi F, Postorino P, Domenici F (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313

    Article  Google Scholar 

  4. Fasolato C, Domenici F, Sennato S, Mura F, De Angelis L, Luongo F, Costantini F, Bordi F, Postorino P (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105

    Article  ADS  Google Scholar 

  5. Kim J, Maitra R, Pedrotti KD, Dunbar WB (2013) A patch-clamp asic for nanopore-based dna analysis. IEEE Trans Biomed Circuits Syst 7(3):285–295

    Article  Google Scholar 

  6. Yue H, Mason AJ (2013) Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19):3929–3934

    Article  Google Scholar 

  7. Sanghavi BJ, Moore JA, Chavez JL, Hagen JA, Loughnane NK, Chou CF, Swami NS (2016) Aptamer-functionalized nanoparticles for surface immobilization-free electrochemical detection of cortisol in a microfluidic device. Biosens Bioelectron 78:244–252

    Article  Google Scholar 

  8. Costantini F, Tiggelaar RM, Salvio R, Nardecchia M, Schlautmann S, Manetti C, Gardeniers H, de Cesare G, Caputo D, Nascetti A (2017) An all-glass microfluidic network with integrated amorphous silicon photosensors for on-chip monitoring of enzymatic biochemical assay. Biosensors 7(4):58

    Article  Google Scholar 

  9. Liu R, Ishimatsu R, Yahiro M, Adachi C, Nakano K, Imato T (2015) Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode. Talanta 134:37–47

    Article  Google Scholar 

  10. Robbins H, Sumitomo K, Tsujimura N, Kamei T (2017) Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing. J Micromech Microeng 28(2):024001

    Article  Google Scholar 

  11. Novo P, Chu V, Conde JP (2014) Integrated fluorescence detection of labeled biomolecules using a prism-like PDMS microfluidic chip and lateral light excitation. Lab Chip 14:1991–1995

    Article  Google Scholar 

  12. Petrucci G, Caputo D, Lovecchio N, Costantini F, Legnini I, Bozzoni I, Nascetti A, de Cesare G (2017) Multifunctional system-on-glass for lab-on-chip applications. Biosens Bioelectron 93:315–321

    Article  Google Scholar 

  13. Bruijns BB, Costantini F, Lovecchio N, Tiggelaar RM, Di Timoteo G, Nascetti A, de Cesare G, Gardeniers JGE, Caputo D (2019) On-chip real-time monitoring of multiple displacement amplification of DNA. Sens Actuators B: Chem 293:16–22

    Article  Google Scholar 

  14. Gulliksen A, Solli LA, Drese KS, Sorensen O, Karlsen F, Rogne H, Hovig E, Sirevag R (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5(4):416–420

    Article  Google Scholar 

  15. Martinez-Quijada J, Caverhill-Godkewitsch S, Reynolds M, Gutierrez-Rivera L, Johnstone RW, Elliott DG, Sameoto D, Backhouse CJ (2013) Fabrication and characterization of aluminum thin film heaters and temperature sensors on a photopolymer for lab-on-chip systems. Sens Actuators A 193:170–181

    Article  Google Scholar 

  16. Ohlander A, Zilio C, Hammerle T, Zelenin S, Klink G, Chiari M, Bock K, Russom A (2013) Genoty** of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip 13(11):2075–2082

    Article  Google Scholar 

  17. Costantini F, Petrucci G, Lovecchio N, Nardecchia M, Nascetti A, de Cesare G, Tedeschi L, Domenici C, Ruggi A, Placidi P et al (2018) Integrated sensor system for dna amplification and separation based on thin film technology. IEEE Trans Compon Packag Manuf Technol 8(7):1141–1148

    Article  Google Scholar 

  18. Mirasoli M, Bonvicini F, Lovecchio N, Petrucci G, Zangheri M, Calabria D, Costantini F, Roda A, Gallinella G, Caputo D et al (2018) On-chip lamp-bart reaction for viral dna real-time bioluminescence detection. Sens Actuators B: Chem 262:1024–1033

    Article  Google Scholar 

  19. Lovecchio N, Petrucci G, Caputo D, Alameddine S, Carpentiero M, Martini L, Parisi E, de Cesare G, Nascetti A (2015) Thermal control system based on thin film heaters and amorphous silicon diodes. In: 2015 6th international workshop on advances in sensors and interfaces (IWASI). IEEE, pp 277–282

    Google Scholar 

  20. Caputo D (1999) Degradation and annealing of amorphous silicon solar cells by current injection: experiment and modeling. Sol Energy Mater Sol Cells 59:289–298

    Article  Google Scholar 

  21. Caputo D, de Cesare G, Ceccarelli M, Nascetti A, Tucci M, Meda L, Losurdo M, Bruno G (2008) Characterization of chromium silicide thin layer formed on amorphous silicon films. J Non-Cryst Solids 354(19-25):2171–2175

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lovecchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lovecchio, N., de Cesare, G., Nascetti, A., Buzzin, A., Caputo, D. (2020). Stability of Hydrogenated Amorphous Silicon Diodes as Thin Film Temperature Sensors. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_39

Download citation

Publish with us

Policies and ethics

Navigation