Renewable Energy Sources and Systems

  • Chapter
  • First Online:
Solar Energy Conversion Systems in the Built Environment

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The chapter describes renewable energy sources, focusing on solar radiation and also addressing geothermal energy, bioenergy, wind energy and hydroenergy. Details on the solar radiation components, on monitoring procedures and equipment and on numerical modelling are discussed as tools for the assessment of the solar energy potential and the available solar energy in the built environment. The factors affecting the solar energy variability in the built environment are outlined considering the available solar radiation on vertical surfaces (facades), on horizontal and on tilted surfaces for buildings specific arrangements. The main solar energy conversion systems (solar thermal and photovoltaic systems) are discussed as individual systems and as part of hybrid thermal systems (including geothermal and bioenergy systems) and hybrid electrical systems (including wind and micro-hydro energy systems) that are recommended to be implemented at building and at the community level. The most common functional schemes of the solar energy conversion systems and of the sustainable energy mixes are detailed considering their components and their role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberoumand S, Ghamari S, Shabani B (2018) Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: an experimental study. Sol Energy 165:167–177

    Article  Google Scholar 

  2. Ahmed A, Ossen D, Jamei E, Manaf N, Said I, Ahmad M (2014) Urban surface temperature behaviour and heat island effect in a tropical planned city. Theor Appl Climatol 115:493–514

    Google Scholar 

  3. Alves EDL (2016) Seasonal and spatial variation of surface urban heat island intensity in a small urban agglomerate in Brazil. Climate 4(61). https://doi.org/10.3390/cli4040061

    Article  Google Scholar 

  4. American Meteorological Society (2019) American Meteorological Society Glossary of Meteorology. http://glossary.ametsoc.org/wiki/Main_Page. Accessed 20 July 2019

  5. American Society of Mechanical Engineers (1989) Performance test code for wind turbines. ASME/ANSI PTC 42-1988, New York, USA

    Google Scholar 

  6. Andenæs E, Jelle BP, Ramlo K, Kolås T, Selj J, Foss SE (2018) The influence of snow and ice coverage on the energy generation from photovoltaic solar cells. Sol Energy 159:318–328

    Article  Google Scholar 

  7. Andreou E, Axarli K (2012) Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew Energy 43:354–363

    Article  Google Scholar 

  8. Antonanzas-Torres F, Urraca R, Polo J, Perpiñán-Lamigueiro O, Escobar R (2019) Clear sky solar irradiance models: a review of seventy models. Renew Sust Energy Rev 107:374–387

    Article  Google Scholar 

  9. Atwater MA, Ball JT (1981) A surface solar radiation model for cloudy atmospheres. Mon Weather Rev 109:878–888

    Article  Google Scholar 

  10. Azargohar R, Sonil N, Dalai AK, Kozinski JA (2019) Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass Bioenerg 120:458–470

    Article  Google Scholar 

  11. Azevedeo JA, Chapman L, Muller CL (2016) Quantifying the daytime and night-time urban heat island in Birmingham, UK: a comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sens-Basel 8(153). https://doi.org/10.3390/rs8020153

    Article  Google Scholar 

  12. Badescu V (2013) Assessing the performance of solar radiation computing models and model selection procedures. J Atmos Sol-Terr Phy 105–106:119–134

    Article  Google Scholar 

  13. Bakirci K (2012) General models for optimum tilt angles of solar panels: Turkey case study. Renew Sustain Energy Rev 16(8):6149–6159

    Article  Google Scholar 

  14. Bason F (2004) Diffuse solar irradiance and atmospheric turbidity. In: Proceedings of EuroSun Conference, Freiburg, Germany

    Google Scholar 

  15. Bason F (2007) Solar irradiance measurements from the Danish Galathea 3 expedition. In: Proceedings of ISES solar world conference, Bei**g, China

    Google Scholar 

  16. Battery University (2019) How to calculate battery runtime. https://batteryuniversity.com/learn/article/bu_503_how_to_calculate_battery_runtime. Accessed 15 July 2019

  17. Benghanem M (2011) Optimization of tilt angle for solar panel: case study for Madinah, Saudi Arabia. Appl Energ 88(4):1427–1433

    Article  Google Scholar 

  18. Borbora J, Das AK (2014) Summer time urban heat island study for Guwahati city, India. Sustain Cities Soc 11:61–66

    Article  Google Scholar 

  19. Brabec M, Paulescu M, Badescu V (2015) Tailored vs black-box models for forecasting hourly average solar irradiance. Sol Energy 111:320–331

    Article  Google Scholar 

  20. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, West Sussex

    Book  Google Scholar 

  21. Busato B, Lazzarin RM, Noro M (2014) Three years of study of the urban heat island in Padua: experimental results. Sustain Cities Soc 10:251–258

    Article  Google Scholar 

  22. Chang YP (2009) Optimal design of discrete-value tilt angle of PV using sequential neural-network approximation and orthogonal array. Expert Syst Appl 36(3):6010–6018

    Article  Google Scholar 

  23. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Physics 8:676–680

    Article  Google Scholar 

  24. Charalambides AG, Burduhos BG (2014) Effect of clouds on solar irradiance. UEFISCDI, Module III—Bilateral Cooperation, contract no. 765/30.04.2014. http://old.unitbv.ro/ecsol-prognosis/ro-ro/results.aspx, Accessed June 2019

  25. Colli A, Zaaiman WJ (2012) Maximum-power-based PV performance validation method: application to single-axis tracking and fixed-Tilt c-Si systems in the Italian Alpine region. IEEE J Photovolt 2(4):555–563

    Article  Google Scholar 

  26. Cotar A, Flicik A (2012) Photovoltaic systems. REA Kvarner d.o.o., Rijeka, Croatia

    Google Scholar 

  27. Cotorcea A (2017) A review of methods for solar radiation estimation used in off-shore applications. “Mircea cel Batran” Naval Acad Sci Bull 20(2):8–11. https://www.anmb.ro/buletinstiintific/buletine/2017_Issue2/8-11.pdf. Accessed 15 July 2019

  28. Despotovic M, Nedic V (2015) Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels. Energy Convers Manag 97:121–131

    Article  Google Scholar 

  29. Deutsche Gesellschaft für Sonnenenergie (2009) Planning & installing photovoltaic systems—a guide for installers, architects and engineers. Earthscan Ltd., London

    Google Scholar 

  30. Diaconescu DV, Visa I, Hermenean IS, Vatasescu MM (2009) Clouds influence on the solar radiation for a mountain location. Environ Eng Manag J 8:849–853

    Article  Google Scholar 

  31. Donev JMKC, Yyelland B, Stenhouse K, Hanania J, Amin S (2018) Energy education—solar energy to the Earth. https://energyeducation.ca/encyclopedia/Solar_energy_to_the_Earth. Accessed 20 July 2019

  32. dos Santos IP, Ruther R (2014) Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil. Renew Energy 63:116–124

    Article  Google Scholar 

  33. Duffie JA, Beckman A (2013) Solar engineering of solar thermal processes, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  34. Dunlop JP (2010) Photovoltaic systems, 2nd edn. American Technical Publishers, Orland Park

    Google Scholar 

  35. Earth System Research Laboratory (2019) LLLJP wind shear formula (power law). https://www.esrl.noaa.gov/csd/projects/lamar/windshearformula.html. Accessed 15 July 2019

  36. Elhab BR, Sopian K, Mat S, Lim C, Sulaiman MY, Ruslan MH, Saadatian O (2012) Optimizing tilt angles and orientations of solar panels for Kuala Lumpur, Malaysia. Sci Res Essays 7(42):3758–3765

    Google Scholar 

  37. Energy Informative (2019) Grid tied, off-grid and hybrid solar systems. https://energyinformative.org/grid-tied-off-grid-and-hybrid-solar-systems. Accessed 15 July 2019

  38. Engineering ToolBox (2019a) Combustion of wood—heat values. https://www.engineeringtoolbox.com/wood-combustion-heat-d_372.html, Accessed 01 Feb 2019

  39. Engineering ToolBox (2019b) Fuels—higher and lower calorific values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html. Accessed 01 Feb 2019

  40. Engineering ToolBox (2019c) Fuel gases heating values. https://www.engineeringtoolbox.com/heating-values-fuel-gases-d_823.html. Accessed 01 Feb 2019

  41. Engineering ToolBox (2019d) Ethylene glycol heat-transfer fluid. https://www.engineeringtoolbox.com/ethylene-glycol-d_146.html, Accessed 01 Feb 2019

  42. Enphase (2019) http://www.enphase.com. Accessed May 2019

  43. Eppley (2019a) Automatic solar tracker, model SMT. http://www.eppleylab.com/instrument-list/automatic-solar-tracker. Accessed 15 July 2019

  44. Eppley (2019b) Black & white pyranometer—the diffuse pyranometer model, pp 8–48. http://www.eppleylab.com/instrument-list/black-white-pyranometer. Accessed May 2019

  45. European Environment Agency (2009) Europe’s onshore and offshore wind energy potential: An assessment of environmental and economic constraints. EEA Technical report 6. https://www.energy.eu/publications/a07.pdf. Accessed 8 July 2019

  46. Fekete I, Farkas I (2019) Numerical and experimental study of building integrated solar tile collectors. Renew Energy 137:45–55

    Article  Google Scholar 

  47. Ferreira F, Camacho JR (2016) Small hydro plants—estimated hydropower potential. Lambert Academic Publishing

    Google Scholar 

  48. Fraenkel P (1997) Hydrosoft: a software tool for the evaluation of low-head hydropower sources. In: Proceedings of Hidroenergia97 Conference, p 380

    Google Scholar 

  49. Fridleifsson IB, Bertani R, Huenges E, Lund JW, Ragnarsson A, Rybach L (2008) The possible role and contribution of geothermal energy to the mitigation of climate change, Proceedings of IPCC sco** meeting on renewable energy sources, Luebeck, Germany, pp 59–80

    Google Scholar 

  50. Gautier C (1986) Evolution of net surface shortwave radiation over the Indian Ocean during MONEX 1979: a satellite description. Mon Weather Rev 114:525–533

    Article  Google Scholar 

  51. Ge R, Wang J, Lixiao Z, Guang** T (2016) Impacts of urbanization on the urban thermal environment in Bei**g. Acta Ecol Sin 36. https://doi.org/10.5846/stxb201409301935

  52. Geothermal Energy Administration (2007) A Guide to Geothermal and the Environment

    Google Scholar 

  53. Gipe P (2019) Fundamentals of wind energy. http://www.wind-works.org/cms/fileadmin/user_upload/Files/presentations/Gipe_ZNE-SCE-Wind_02_Sizing.pdf. Accessed 15 May 2019

  54. Glassley WE (2014) Geothermal energy: renewable energy and environment, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton, London, New York

    Book  Google Scholar 

  55. Global Solar Atlas (2019) https://globalsolaratlas.info. Accessed 01 May 2019

  56. Gong X, Kulkarni M (2005) Design optimization of a large scale rooftop photovoltaic system. Sol Energy 78(3):362–374

    Article  Google Scholar 

  57. Gong FY, Zeng ZC, Ng E, Norford LK (2019) Spatiotemporal patterns of street-level solar radiation estimated using Google street view in a high-density urban environment. Build Environ 148:547–566

    Article  Google Scholar 

  58. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cells efficiency tables (version 52). Prog Photovolt 26(7):427–436

    Article  Google Scholar 

  59. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY (2019) Solar cell efficiency tables (version 53). Prog Photovolt 27(1):3–12

    Article  Google Scholar 

  60. GreensunSolar (2019) https://www.greensunpv.com/greensun-mono-48v-solar-panel-480w-490w-500w_p26.html. Accessed 15 June 2019

  61. Guerrero-Lemus R, Vega R, Kim T, Kimm A, Shepard LE (2016) Bifacial solar photovoltaics—a technology review. Renew Sust Energy Rev 60:1533–1549

    Article  Google Scholar 

  62. Gueymard CA (2017) Cloud and Albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 2: performance of separation and transposition models for global tilted irradiance. Sol Energy 153:766–779

    Article  Google Scholar 

  63. Gueymard CA, Lara-Fanego V, Sengupta M, **e Y (2019) Surface albedo and reflectance: review of definitions, angular and spectral effects, and intercomparison of major data sources in support of advanced solar irradiance modeling over the Americas. Sol Energy 182:194–212

    Article  Google Scholar 

  64. Hartner M, Ortner A, Hiesl A, Haas R (2015) East to west—the optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl Energy 160:94–107

    Article  Google Scholar 

  65. Hassid S, Santamouris M, Papanikolaou N, Linardi A, Klitsikas N, Georgakis C (2000) The effect of the Athens heat island on air conditioning load. Energy Build 32:131–141

    Article  Google Scholar 

  66. Hau E (2006) Wind turbines: fundamentals, technologies, application, economics. Springer, Germany

    Book  Google Scholar 

  67. Heller A (2000) 15 years of R&D in central solar heating in Denmark. Sol Energy 69(6):437–447

    Article  Google Scholar 

  68. OTT HydroMet GmbH (2019) OTT C31 universal current meter for discharge measurements. https://www.ott.com/products/water-flow-3/ott-c31-958. Accessed May 2019

  69. Ibrahim D (1995) Optimum tilt angle for solar collectors used in Cyprus. Renew Energ 6(7):813–819

    Article  Google Scholar 

  70. Ineichen P, Perez R (2002) A new air mass independent formulation for the Linke turbidity coefficient. Sol Energy 73:151–157

    Article  Google Scholar 

  71. Intergovernmental Panel on Climate Change (2013) Climate Change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  72. International Energy Agency (2017a) Bioenergy’s role in balancing the electricity grid and providing storage options—an EU perspective, IEA Bioenergy: task 41P6. https://www.ieabioenergy.com/wp-content/uploads/2017/02/IEA-Bioenergy-bio-in-balancing-grid_master-FINAL.pdf. Accessed 15 July 2019

  73. International Energy Agency (2017b) IEA Bioenergy, global wood pellet industry and trade study 2017, IEA Bioenergy Task 40 Report. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/IEA-Wood-Pellet-Study_final-2017-06.pdf. Accessed 15 July 2019

  74. International Energy Agency (2018a) Renewables information: overview. https://webstore.iea.org/renewables-information-2018-overview. Accessed 15 July 2019

  75. International Energy Agency (2018b) Trends 2018 in photovoltaic applications—survey report of selected IEA countries between 1992 and 2017. http://www.iea-pvps.org/fileadmin/dam/intranet/task1/IEA_PVPS_Trends_2018_in_Photovoltaic_Applications_03.pdf. Accessed 17 June 2019

  76. International Energy Agency (2019) Annual report 2018 IEA bioenergy. Pearse Buckley Ed., Dublin, Ireland

    Google Scholar 

  77. Japan Meteorological Agency (2019) Advanced information on solar and infrared radiation. http://www.data.jma.go.jp/gmd/env/radiation/en/nmhs/nmhs_rad.html. Accessed May 2019

  78. Jerlov NG (1968) Global radiation incident on the sea surface (Chap. 4). In: Optical oceanography. Elsevier Oceanography Series, vol 5, pp 65–68

    Google Scholar 

  79. Johnson G (2006) Wind energy systems. Manhattan, KS

    Google Scholar 

  80. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S (2017) Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy 114:1407–1418

    Article  Google Scholar 

  81. Kallis KX, Pellegrini Susini GA, Oakey JE (2013) A comparison between Miscanthus and bioethanol waste pellets and their performance in a downdraft gasifier. Appl Energy 101:333–340

    Article  Google Scholar 

  82. Kalogirou SA (2009) Solar energy engineering—processes and systems, 2nd edn. Academic Press, London

    Google Scholar 

  83. Kaltschmitt M, Streicher W, Wiese A (2007) Renewable energy: technology, economics, and environment. Springer, Berlin, p 55

    Google Scholar 

  84. Khahro SF, Tabbassum K, Talpur S, Alvi MB, Liao X, Dong L (2015) Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. Int J Electr Power Energy Syst 64:1073–1080

    Article  Google Scholar 

  85. Kipp & Zonen (2019) CM121B/C shadow ring. https://www.kippzonen.com/Product/42/CM121B-C-Shadow-Ring#.XRwvd_5S-M8. Accessed May 2019

  86. Klok L, Zwart S, Verhagen H, Mauri E (2012) The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour Conserv Recycl 64:23–29

    Article  Google Scholar 

  87. Lac C, Donnelly RP, Masson V, Pal S, Riette S, Donier S, Queguiner S, Tanguy G, Ammoura L, Xueref-Remy I (2013) CO2 dispersion modelling over Paris region within the CO2-megaparis project. Atmos Chem Phys 13:4941–4961

    Article  Google Scholar 

  88. Lawrence Berkley National Laboratory (2019) Cool Roofing Materials Database, https://heatisland.lbl.gov/resources/cool-roofing-materials-database. Accessed February 2019

  89. Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sens Environ 130:136–152

    Article  Google Scholar 

  90. Li DHW, Lam TNT (2007) Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data. Int J Photovolt 1–9

    Google Scholar 

  91. Livada I, Santamouris M, Niachou K, Papanikolaou N, Mihalakakou G (2002) Determination of places in the great Athens area where the heat island effect is observed. Theor Appl Climatol 71:219–230

    Article  Google Scholar 

  92. Lokoshchenko MA (2014) Urban ‘heat island’ in Moscow. Urban Clim 10:550–562

    Article  Google Scholar 

  93. Lund JW, Boyd TL (2015) Direct utilization of geothermal energy 2015 worldwide review. Proceedings of the world geothermal congress 2015

    Google Scholar 

  94. Mahbubul IM, Khan MMA, Ibrahim NI, Ali HM, Al-Sulaiman FA, Saidur R (2018) Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew Energy 121:36–44

    Article  Google Scholar 

  95. Marando F, Salvatori E, Sebastiani A, Fusaro L, Manes F (2019) Regulating ecosystem services and green infrastructure: assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecol Model 392:92–102

    Article  Google Scholar 

  96. Marugo G, Valdes CF, Gomez C, Chejne F (2019) Pelletizing of Colombian agro-industrial biomasses with crude glycerol. Renew Energy 134:558–568

    Article  Google Scholar 

  97. Masters GM (2004) Renewable and efficient electric power systems. Wiley, Hoboken

    Book  Google Scholar 

  98. Meliss M (1997) Regenerative energiequellen—praktikum. Springer, Heidelberg

    Book  Google Scholar 

  99. Moghadam H, Tabrizi FF, Sharak AZ (2011) Optimization of solar flat collector inclination. Desalination 265(1–3):107–111

    Article  Google Scholar 

  100. Mohajeri N, Gudmundsson A, Kunckler T, Upadhyay G, Assouline D, Kämpf JH, Scartezzini JL (2019) A solar-based sustainable urban design: the effects of city-scale street canyon geometry on solar access in Geneva, Switzerland. Appl Energy 240:173–190

    Article  Google Scholar 

  101. Mondol JD, Yohanis YG, Norton B (2008) Solar radiation modelling for the simulation of photovoltaic systems. Renew Energy 33:1109–1120

    Article  Google Scholar 

  102. Nasir DSN, Hughes BR, Calautit JK (2017) Influence of urban form on the performance of road pavement solar collector system: symmetrical and asymmetrical heights. Energ Convers Manag 149:904–917

    Article  Google Scholar 

  103. National Aeronautics and Space Administration—Earth Observatory (2015) Climate and Earth’s energy budget. http://earthobservatory.nasa.gov/Features/EnergyBalance. Accessed July 2019

  104. National Renewable Energy Laboratory (1992) Shining on—a primer on solar radiation data. https://rredc.nrel.gov/solar/pubs/shining/chap4.html. Accessed May 2019

  105. National Renewable Energy Laboratory (2009) Biodiesel handling and use guide, 4th edn. https://www.nrel.gov/docs/fy09osti/43672.pdf. Accessed 01 Feb 2019

  106. National Renewable Energy Laboratory (2018) PV efficiency chart. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181221.pdf. Accessed May 2019

  107. National Renewable Energy Laboratory (2019) Solar spectra—air mass zero. http://rredc.nrel.gov/solar/spectra/am0. Accessed May 2019

  108. Newport (2019) Calibrated reference cell, meter, quartz window model: 91150 V. https://www.newport.com/p/91150V. Accessed May 2019

  109. Nicholson SE (1975) A pollution model for street-level air. Atmos Environ 9:19–31

    Article  Google Scholar 

  110. Nkwetta DN, Smyth M, Zacharopoulos A, Hyde T (2013) Experimental performance analysis and optimisation of medium temperature solar thermal collectors with silicon oil as a heat transfer fluid. Int J Energy Res 37:570–581

    Article  Google Scholar 

  111. O’Hegarty R, Kinnane O, McCormack SJ (2017) Concrete solar collectors for façade integration: an experimental and numerical investigation. Appl Energy 206:1040–1061

    Article  Google Scholar 

  112. Ohl RS (1941) Light-sensitive electric device including silicon. US Patent 2443542, filed 27 May 1941

    Google Scholar 

  113. Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113

    Article  Google Scholar 

  114. Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. Wind Clim Cities 277:81–107

    Article  Google Scholar 

  115. Pandey CK, Katiyar AK (2009) A note on diffuse solar radiation on a tilted surface. Energy 34(11):1764–1769

    Article  Google Scholar 

  116. Pandey CK, Katiyar AK (2009) A comparative study to estimate daily diffuse solar radiation over India. Energy 34(11):1792–1796

    Article  Google Scholar 

  117. Pandey CK, Katiyar AK (2013) Solar radiation: models and measurement techniques. J Energy, Article ID 305207

    Google Scholar 

  118. Patel MR (1999) Wind and solar power system. CRC Press LLC, USA

    Google Scholar 

  119. Patel MR (2006) Wind and solar power systems—design, analysis, and operation. Taylor & Francis, New York

    Google Scholar 

  120. Pearson GL (1985) PV founders award luncheon. Conference record. In: 18th IEEE photovoltaic specialists conference, Las Vegas

    Google Scholar 

  121. Pena R, Medina A (2010) Capacity estimation methods applied to mini hydro plants. In: Gaonkar DN (ed) Distributed generation. InTech. http://www.intechopen.com/books/distributed-generation/capacity-estimation-methods-applied-to-mini-hydro-plants. Accessed May 2019

    Google Scholar 

  122. Perez R, Ineichen P, Moore K, Kmiecik M, Chain C, George R, Vignola F (2002) A new operational model for satellite-derived irradiances: description and validation. Sol Energy 73:307–317

    Article  Google Scholar 

  123. Pinker RT, Frouin R, Li Z (1995) A review of satellite methods to derive surface shortwave irradiance. Remote Sens Environ 51:108–124

    Article  Google Scholar 

  124. Prouvost B (2017) Creating the ultimate hybrid system by mixing solar energy and hydroelectricity. Renew Energy Focus. http://www.renewableenergyfocus.com/view/45793/creating-the-ultimate-hybrid-system-by-mixing-solar-energy-and-hydroelectricity. Accessed 25 July 2019

  125. PVGIS (2017) http://re.jrc.ec.europa.eu/. Accessed May 2019

  126. Rakovec J, Zaksek K (2012) On the proper analytical expression for the sky-view factor and the diffuse irradiation of a slope for an isotropic sky. Renew Energy 37:440–444

    Article  Google Scholar 

  127. Reed RK (1977) On estimating insolation over the ocean. J Phys Oceanogr 7:482–485

    Article  Google Scholar 

  128. Renne D, Perez R, Zelenka A, Whitlock C, DiPasquale R (1999) Use of weather and climate research satellites for estimating solar resources. Adv Sol Energy 13:171

    Google Scholar 

  129. Rigollier C, Bauer O, Wald L (2000) On the clear sky model of the ESRA—European solar radiation atlas with respect to the Heliosat method. Sol Energy 28(1):33–48

    Article  Google Scholar 

  130. Rigollier C, Lefevre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol Energy 77:159–169

    Article  Google Scholar 

  131. Rohde RA (2007) Global warming art. http://web.archive.org/web/20151013063240/http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png. Accessed 15 June 2019

  132. Rowlands IH, Kemery BP, Beausoleil-Morrison I (2011) Optimal solar-PV tilt angle and azimuth: an Ontario (Canada) case-study. Energy Policy 39(3):1397–1409

    Article  Google Scholar 

  133. Said Z, Saidur R, Sabiha MA, Rahim NA, Anisur MR (2015) Thermo-physical properties of Single Wall carbon nanotubes and its effect on exergy efficiency of a flat plate solar collector. Sol Energy 115:757–769

    Article  Google Scholar 

  134. Santamouris M, Synnefa A, Karlessi T (2011) Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol Energy 85(12):3085–3102

    Article  Google Scholar 

  135. Sarker S, Arauzo J, Nielsen HK (2015) Semi-continuous feeding and gasification of alfalfa and wheat straw pellets in a lab-scale fluidized bed reactor. Energy Convers Manag 99:50–61

    Article  Google Scholar 

  136. Sathyajith M (2006) Wind energy—fundamentals, resource analysis and economics. Springer, Berlin

    Google Scholar 

  137. Sawle Y, Gupta SC, Bohre AK (2016) PV-wind hybrid system: a review with case study. Cogent Eng 3:1189305

    Article  Google Scholar 

  138. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519

    Article  Google Scholar 

  139. Shukla KN, Rangnekar S, Sudhakar K (2015) Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: a case study for Bhopal, India. Energy Rep 1:96–103

    Article  Google Scholar 

  140. Simone M, Barontini F, Nicolella C, Tognotti L (2012) Gasification of pelletized biomass in a pilot scale downdraft gasifier. Bioresour Technol 116:403–412

    Article  Google Scholar 

  141. Siraki AG, Pillay P (2012) Study of optimum tilt angles for solar panels in different latitudes for urban applications. Sol Energy 86:1920–1928

    Article  Google Scholar 

  142. SMA (2019) http://www.sma.de. Accessed May 2019

  143. Soares J, Oliveira AP, Božnar MZ, Mlakar P, Escobedo JF, Machado AJ (2004) Modeling hourly diffuse solar-radiation in the city of Sao Paulo using a neural-network technique. Appl Energy 79(2):201–214

    Article  Google Scholar 

  144. SoDa (2019) http://www.soda-pro.com/maps. Accessed 01 May 2019

  145. SolarGIS (2019) https://solargis.com. Accessed 01 May 2019

  146. Soltani A, Sharifi E (2017) Daily variation of urban heat island effect and its correlations to urban greenery: a case study of Adelaide. Front Arch Res 6:529–538

    Article  Google Scholar 

  147. Soulayman S, Sabbagh W (2014) An algorithm for determining optimum tilt angle and orientation for solar collectors. J Sol Energy Res Updat 1:19–30

    Article  Google Scholar 

  148. Sözen A, Arcaklioglu E, Ozalp M (2004) Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data. Energy Convers Manag 45(18–19):3033–3052

    Article  Google Scholar 

  149. Stanciu C, Stanciu D (2014) Optimum tilt angle for plate collectors all over the World—a declination dependence formula and comparisons of three solar radiation models. Energy Convers Manage 81:133–143

    Article  Google Scholar 

  150. Tao P, Shu L, Zhang J, Lee C, Deng T (2018) Silicone oil-based solar-thermal fluids dispersed with PDMS-modified Fe3O4@graphene hybrid nanoparticles. Prog Nat Sci-Mater 28(5):554–562

    Article  Google Scholar 

  151. Thaker P, Gokhale S (2016) The impact of traffic-flow patterns on air quality in urban street canyons. Environ Pollut 208:161–169

    Article  Google Scholar 

  152. Tiwari AK (2015) Application of nanoparticles in solar collectors: a review. Mater Today: Proc 2(4–5):3638–3647

    Google Scholar 

  153. Vallati A, Grignaffini A, Romagna M, Mauri L, Colucci C (2016) Influence of street canyon’s microclimate on the energy demand for space cooling and heating of buildings. Energy Proc 101:941–947

    Article  Google Scholar 

  154. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37(2):155–182

    Article  Google Scholar 

  155. Visa I, Jaliu C, Duta A, Neagoe M, Comsit M, Moldovan M, Ciobanu D, Burduhos B, Saulescu R (2015) The role of mechanisms in sustainable energy systems. Transilvania University of Brasov Publishing House, Brasov

    Google Scholar 

  156. Wang W, Liu K, Tang R, Wang S (2019) Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Phys Chem Earth. https://doi.org/10.1016/j.pce.2019.01.00

  157. World Energy (2019) Energy resources, hydropower. https://www.worldenergy.org/data/resources/resource/hydropower. Accessed May 2019

  158. Yakup MAHM, Malik AQ (2001) Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew Energy 24(2):223–234

    Article  Google Scholar 

  159. Yan R, Saha TK, Meredith P, Goodwin S (2013) Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane, Australia. Energy Convers Manag 74:102–108

    Article  Google Scholar 

  160. Yang F, Gao Y, Zhong K, Kang Y (2016) Impacts of cross-ventilation on the air quality in street canyons with different building arrangements. Build Environ 104:1–12

    Article  Google Scholar 

  161. Yuan J, Emura K, Farnham C (2016) Highly reflective roofing sheets installed on a school building to mitigate urban heat island effect in Osaka. Sustainability 8:514

    Article  Google Scholar 

  162. Yurddas A, Çerçi Y (2017) Numerical analysis of heat transfer in a flat-plate solar collector with nanofluids. Heat Transf Res 48(8):681–714

    Article  Google Scholar 

  163. Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (2014) ZSW brings world record back to Stuttgart: new best mark in thin-film solar performance with 21.7 percent efficiency. Stuttgart, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visa, I., Duta, A., Moldovan, M., Burduhos, B., Neagoe, M. (2020). Renewable Energy Sources and Systems. In: Solar Energy Conversion Systems in the Built Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-34829-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34829-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34828-1

  • Online ISBN: 978-3-030-34829-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation