Internet of Things for Irrigation System

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2019)

Abstract

Technological advances have impacted in recent years most of the economic sectors of the world, where they have managed to increase efficiency and profitability particularly with one of the fastest growing applications in this sector: the Internet of Things (IoT). Agriculture is not the exception. However, most farmers in Mexico still use traditional methods of control and monitoring, which prove to be inefficient, causing time and cost losses in today’s globalized world.

The present design is an intelligent irrigation system, implemented under IoT principles and free hardware and software. There are soil moisture, luminosity, humidity and temperature sensors in the environment connected to a Raspberry Pi module; sensors detect values in real time while the Raspberry sends the data to be stored in the cloud. The control system is based on fuzzy logic rules that allow turning on and off a water pump. This design includes a mobile app where the system status is monitored. Tests show an appropriate behavior of the irrigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Comisión Nacional del Agua: Estadísticas del Agua en México, pp. 45–50 (2018)

    Google Scholar 

  2. Fereres, E., García-Vila, M.: Irrigation management for efficient crop production. In: Savin, R., Slafer, G. (eds.) Crop Science. ESSTS, pp. 345–360. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-8621-7_162. https://springer.longhoe.net/referenceworkentry/10.1007%2F978-1-4939-2493-6_162-3

  3. IICA: Innovation and Water Management for Sustainable Development in Agriculture, pp. 20–29 (2015). http://repositorio.iica.int/bitstream/11324/3035/2/BVE17068948i.pdf

  4. Organización de las Naciones Unidas para la Alimentación y la Agricultura: El estado mundial de la agricultura y la alimentación. Roma (2018)

    Google Scholar 

  5. Pastor, E.J.: Introducción al Internet de las Cosas, pp. 80–120 (2015)

    Google Scholar 

  6. Clúster ICT-Audiovisual de Madrid: Internet de las cosas: Objetos interconectados y dispositivos inteligentes, pp. 68–75 (2016). https://actualidad.madridnetwork.org/imgArticulos/Documentos/635294387380363206.pdf

  7. Negrete, J.: Internet of things in Mexican agriculture; a technology to increase agricultural productivity and reduce rural poverty, pp. 46–47 (2018)

    Google Scholar 

  8. Alper Akkas, M.: An IoT-based greenhouse monitoring system with Micaz motes, pp. 604–608 (2017). https://www.sciencedirect.com/science/article/pii/S187705091731709X

  9. World Water Vision Report: Visión Mundial del Agua, México (2017)

    Google Scholar 

  10. Karim, F., Karim, F.: Monitoring system using web of things in precision agriculture. In: The 12th International Conference on Future Networks and Communications (2017). https://reader.elsevier.com/reader/sd/pii/S1877050917312590

  11. Shekhar, Y., Dagur, E., Mishra, S., Tom, R.J., Veeramanikandan, M., Sankaranarayanan, S.: Intelligent IoT based automated irrigation system. Int. J. Appl. Eng. Res. 12(18), 7306–7320 (2017)

    Google Scholar 

  12. OBSoil-01: Octopus Soil Moisture Sensor Brick, p. 5 (2016)

    Google Scholar 

  13. D-Robotics: DHT11 Humidity & Temperature Sensor, Mouser Electronics. https://www.mouser.com/ds/2/758/DHT11-Technical-DataSheet-Translated-Version-1143054.pdf. Accessed 27 May 2019

  14. Raspberry Pi Foundation: Raspberry Pi 3 Model B, Raspberry Pi Website, p. 137 (2016)

    Google Scholar 

  15. Perez, A., et al.: Una Metodología Para El Desarrollo De Hardware Y Software Embebidos En Sistemas Críticos De Seguridad. Sist. Cibernética e Informática 3(2), 70–75 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Villafaña-Gamboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guzmán-Toloza, J.M., Villafaña-Gamboa, D.F., Peniche-Ruiz, L.J., Gómez-Buenfil, R.A., Molina-Puc, J.K., Rodríguez-Morayta, M.J. (2019). Internet of Things for Irrigation System. In: Mata-Rivera, M., Zagal-Flores, R., Barría-Huidobro, C. (eds) Telematics and Computing. WITCOM 2019. Communications in Computer and Information Science, vol 1053. Springer, Cham. https://doi.org/10.1007/978-3-030-33229-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33229-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33228-0

  • Online ISBN: 978-3-030-33229-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation