Magnetic PDMS Microparticles for Biomedical and Energy Applications

  • Conference paper
  • First Online:
VipIMAGE 2019 (VipIMAGE 2019)

Abstract

Polydimethylsiloxane (PDMS) is one of the most widely used polymers in microfluidics. Furthermore, magnetic nanoparticles (MNPs), due their superior thermal properties, are also gaining a great interest among the industry and microfluidic scientific community. In this work, a technique based on a flow focusing principle was used to produce magnetic PDMS microparticles. A microvisualization system composed by digital video cameras and optical lenses was used to control and measure the size of the obtained microparticles. To the best of our knowledge, this is the first work that shows magnetic PDMS microparticles able to be used for both biomedical and energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mata, A., Fleischman, A., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevice 7(4), 281–293 (2005)

    Article  CAS  Google Scholar 

  2. Lima, R., Wada, S., Tanaka, S., Takeda, M., Ishikawa, T., Tsubota, K., Imai, Y., Yamaguchi, T.: In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices 10(2), 153–167 (2008)

    Article  Google Scholar 

  3. Rodrigues, R.O., Pinho, D., Bento, D., Lima, R., Ribeiro, J.: Wall expansion assessment of an intracranial aneurysm model by a 3D digital image correlation system. Measurement 88, 262–270 (2016)

    Article  Google Scholar 

  4. Cardoso, C., Fernandes, C.S., Lima, R., Ribeiro, J.: Biomechanical analysis of PDMS channels using different hyperelastic numerical constitutive models. Mech. Res. Commun. 90, 26–33 (2018)

    Article  Google Scholar 

  5. Tanaka, T., Ishikawa, T., Numayama-Tsuruta, K., Imai, Y., Ueno, H., Matsuki, N., Yamaguchi, T.: Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip 12, 4336–4343 (2012)

    Article  CAS  Google Scholar 

  6. Faustino, V., Catarino, S.O., Lima, R., Minas, G.: Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J. Biomech. 49(11), 2280–2292 (2016)

    Article  Google Scholar 

  7. Bento, D., Rodrigues, R., Faustino, V., Pinho, D., Fernandes, C., Pereira, A., Garcia, V., Miranda, J., Lima, R.: Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements. Micromachines 9, 151 (2018)

    Article  Google Scholar 

  8. Faustino, V., Catarino, S.O., Pinho, D., Lima, R.A., Minas, G.: A passive microfluidic device based on crossflow filtration for cell separation measurements: a spectrophotometric characterization. Biosensors 8, 125 (2018)

    Article  Google Scholar 

  9. Shin, M., Matsuda, K., Ishii, O., Terai, H., Kaazempur-Mofrad, M., Borenstein, J., Detmar, M., Vacanti, J.P.: Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed. Microdevices 6(4), 269–278 (2004)

    Article  CAS  Google Scholar 

  10. Ohashi, T., Sato, M.: Endothelial cell responses to fluid shear stress: from methodology to applications. In: Single and Two-Phase Flows on Chemical and Biomedical Engineering, pp. 579–599. Bentham Science Publishers (2012)

    Google Scholar 

  11. Huh, D., Torisawa, Y.S., Hamilton, G.A., Kim, H.J., Ingber, D.E.: Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12), 2156–2164 (2012)

    Article  CAS  Google Scholar 

  12. Abkarian, M., Faivre, M., Horton, R., Smistrup, K., Best-Popescu, C.A., Stone, H.A.: Cellular-scale hydrodynamics. Biomed. Mater. 3, 034011 (2008)

    Article  Google Scholar 

  13. Bento, D., Fernandes, C.S., Miranda, J.M., Lima, R.: In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Exp. Thermal Fluid Sci. 109, 109847 (2019)

    Article  Google Scholar 

  14. Pinho, D., Rodrigues, R.O., Faustino, V., Yaginuma, T., Exposto, J., Lima, R.: Red blood cells radial dispersion in blood flowing through microchannels: the role of temperature. J. Biomech. 49, 2293–2298 (2016)

    Article  Google Scholar 

  15. Acero, A.J., Rebollo-Muñoz, N., Montanero, J.M., Gañán-Calvo, A.M., Vega, E.J.: A new flow focusing technique to produce very thin jets. J. Micromech. Microeng. 23, 065009 (2013)

    Article  Google Scholar 

  16. Muñoz-Sánchez, B.N., Silva, S.F., Pinho, D., Vega, E.J., Lima, R.: Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 10, 014122 (2016)

    Article  Google Scholar 

  17. Anes, C.F., Pinho, D., Muñoz-Sánchez, B.N., Vega, E.J., Lima, R.: Shrinkage and colour in the production of micro-sized PDMS particles for microfluidic applications. J. Micromech. Microeng. 28, 075002 (2018)

    Article  Google Scholar 

  18. Pang, C., Lee, J.W., Tae, Y.T.: Review on combined heat and mass transfer characteristics in Nanofluids. Int. J. Therm. Sci. 87, 49–67 (2015)

    Article  CAS  Google Scholar 

  19. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  CAS  Google Scholar 

  20. Saidur, R., Leong, K.Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15(3), 1646–1668 (2011)

    Article  CAS  Google Scholar 

  21. Cardoso, V.F., Irusta, S., Navascues, N., Lanceros-Mendez, S.: Comparative study of sol-gel methods for the facile synthesis of tailored magnetic silica spheres. Mater. Res. Express 3, 7 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under the strategic grants UID/EMS/04077/2019, UID/EEA/04436/2019 and UID/EMS/00532/2019. The authors are also grateful for the funding of FCT through the projects POCI-01-0145-FEDER-016861, POCI-01-0145-FEDER-028159, NORTE-01-0145-FEDER-029394, NORTE-01-0145-FEDER-030171, funded by COMPETE2020, NORTE2020, PORTUGAL2020, and FEDER, and the PhD grant SFRH/BD/91192/2012. The authors also acknowledge to FCT for partially financing the research under the framework of the project UTAP-EXPL/CTE/0064/2017, financiado no âmbito do Projeto 5665 - Parcerias Internacionais de Ciência e Tecnologia, UT Austin Programme. Partial support from the Spanish Ministry of Science and Education (grant no. DPI2016-78887) and Junta de Extremadura (grants no. GR15014 and IB18005, partially financed by FEDER funds) are gratefully acknowledged too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, R., Vega, E.J., Cardoso, V.F., Minas, G., Montanero, J.M. (2019). Magnetic PDMS Microparticles for Biomedical and Energy Applications. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2019. VipIMAGE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-32040-9_58

Download citation

Publish with us

Policies and ethics

Navigation