Diagnosis and Management of an Infant with Microthrombocytopenia

  • Chapter
  • First Online:
Pediatric Bleeding Disorders

Abstract

Wiskott-Aldrich syndrome (WAS) is an X-linked autosomal recessive disorder characterized by a triad of (1) severe immune dysregulation resulting in recurrent infections, autoimmune disease, and lymphoid malignancies, (2) thrombocytopenia with small platelets, and (3) eczema. WAS is caused by a mutation in the WAS gene on the short arm of the X chromosome. Mutations in the WAS gene can also cause X-linked thrombocytopenia (XLT), a less severe form of WAS, and X-linked neutropenia (XLN). Management for WAS initially is supportive. The only curative option is hematopoietic stem cell transplant. Gene therapy as a curative option is currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balduini CL, Iolascon A, Savoia A. Inherited thrombocytopenias: from genes to therapy. Haematologica. 2002;87(8):860–80.

    CAS  PubMed  Google Scholar 

  2. Gerrits AJ, Leven EA, Frelinger AL 3rd, et al. Effects of eltrombopag on platelet count and platelet activation in Wiskott-Aldrich syndrome/X-linked thrombocytopenia. Blood. 2015;126(11):1367–78.

    Article  CAS  Google Scholar 

  3. Blaese RM, Strober W, Levy AL, Waldmann TA. Hypercatabolism of IgG, IgA, IgM, and albumin in the Wiskott-Aldrich syndrome. A unique disorder of serum protein metabolism. J Clin Invest. 1971;50(11):2331–8.

    Article  CAS  Google Scholar 

  4. Kim JJ, Thrasher AJ, Jones AM, Davies EG, Cale CM. Rituximab for the treatment of autoimmune cytopenias in children with immune deficiency. Br J Haematol. 2007;138(1):94–6.

    Article  CAS  Google Scholar 

  5. Mullen CA, Anderson KD, Blaese RM. Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: long-term follow-up of 62 cases. Blood. 1993;82(10):2961–6.

    Article  CAS  Google Scholar 

  6. Kharya G, Nademi Z, Leahy TR, et al. Haploidentical T-cell alpha beta receptor and CD19-depleted stem cell transplant for Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2014;134(5):1199–201.

    Article  CAS  Google Scholar 

  7. Shin CR, Kim MO, Li D, et al. Outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome. Bone Marrow Transplant. 2012;47(11):1428–35.

    Article  CAS  Google Scholar 

  8. Filipovich AH, Stone JV, Tomany SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant Registry and the National Marrow Donor Program. Blood. 2001;97(6):1598–603.

    Article  CAS  Google Scholar 

  9. Moratto D, Giliani S, Bonfim C, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study. Blood. 2011;118(6):1675–84.

    Article  CAS  Google Scholar 

  10. Friedrich W, Schutz C, Schulz A, Benninghoff U, Honig M. Results and long-term outcome in 39 patients with Wiskott-Aldrich syndrome transplanted from HLA-matched and -mismatched donors. Immunol Res. 2009;44(1–3):18–24.

    Article  Google Scholar 

  11. Kobayashi R, Ariga T, Nonoyama S, et al. Outcome in patients with Wiskott-Aldrich syndrome following stem cell transplantation: an analysis of 57 patients in Japan. Br J Haematol. 2006;135(3):362–6.

    Article  Google Scholar 

  12. Ozsahin H, Cavazzana-Calvo M, Notarangelo LD, et al. Long-term outcome following hematopoietic stem-cell transplantation in Wiskott-Aldrich syndrome: collaborative study of the European Society for Immunodeficiencies and European Group for Blood and Marrow Transplantation. Blood. 2008;111(1):439–45.

    Article  CAS  Google Scholar 

  13. Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.

    Article  Google Scholar 

  14. Morris EC, Fox T, Chakraverty R, et al. Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood. 2017;130(11):1327–35.

    Article  CAS  Google Scholar 

  15. Ochs HD, Slichter SJ, Harker LA, Von Behrens WE, Clark RA, Wedgwood RJ. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood. 1980;55(2):243–52.

    Article  CAS  Google Scholar 

  16. Chiang SCC, Vergamini SM, Husami A, et al. Screening for Wiskott-Aldrich syndrome by flow cytometry. J Allergy Clin Immunol. 2018;142(1):333–335 e338.

    Article  Google Scholar 

  17. Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103(2):456–64.

    Article  CAS  Google Scholar 

  18. Wiskott-Aldrich syndrome. 2018. www.uptodate.com. Accessed 26 June 2019.

  19. ** Y, Mazza C, Christie JR, et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood. 2004;104(13):4010–9.

    Article  CAS  Google Scholar 

  20. Albert MH, Bittner TC, Nonoyama S, et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood. 2010;115(16):3231–8.

    Article  CAS  Google Scholar 

  21. Notarangelo LD, Mazza C, Giliani S, et al. Missense mutations of the WASP gene cause intermittent X-linked thrombocytopenia. Blood. 2002;99(6):2268–9.

    Article  CAS  Google Scholar 

  22. Ancliff PJ, Blundell MP, Cory GO, et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108(7):2182–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rose, M.J., Jacobson-Kelly, A. (2020). Diagnosis and Management of an Infant with Microthrombocytopenia. In: Dunn, A., Kerlin, B., O'Brien, S., Rose, M., Kumar, R. (eds) Pediatric Bleeding Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-31661-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31661-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31660-0

  • Online ISBN: 978-3-030-31661-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation