Attentional Residual Dense Factorized Network for Real-Time Semantic Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

  • 2681 Accesses

Abstract

Semantic segmentation is a pixel-level image dense labeling task and plays a core role in autonomous driving. In this regard, how to balance between precision and speed is a frequently-studied issue. In this paper, we propose an alternative attentional residual dense factorized network (AttRDFNet) to address this issue. Specifically, we design a residual dense factorized convolution block (RDFB), which reaps the benefits of low-level and high-level layer-wise features through dense connection to boost segmentation precision whilst enjoying efficient computation by factorizing large convolution kernel into the product of two smaller kernels. This reduces computational burdens and makes real time become possible. To further leverage layer-wise features, we explore the graininess-aware channel and spatial attention modules to model different levels of salient features of interest. As a result, AttRDFNet can run with the inputs of the resolution 512 \( \times \) 1024 at the speed of 55.6 frames per second on a single Titan X GPU with solid 68.5% Mean IOU on the test set of Cityscapes. Experiments on the Cityscapes dataset show that AttRDFNet has real-time inference whilst achieving competitive precision against well-behaved counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  2. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_5

    Chapter  Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. ar**v:1412.7062 (2014). https://doi.org/10.1080/17476938708814211

    Article  MathSciNet  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ar**v:1706.05587 (2017)

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: CVPR, pp. 5659–5667 (2017). https://doi.org/10.1109/CVPR.2017.667

  8. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016). https://doi.org/10.1109/CVPR.2016.350

  9. Fu, J., Liu, J., Tian, H., Fang, Z., Lu, H.: Dual attention network for scene segmentation, pp. 3146–3154 (2019)

    Google Scholar 

  10. Gamal, M., Siam, M., Abdel-Razek, M.: ShuffleSeg: Real-time semantic segmentation network. ar**v:1803.03816 (2018)

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017). https://doi.org/10.1109/CVPR.2017.243

  13. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: CVPR Workshop, pp. 1175–1183 (2017). https://doi.org/10.1109/CVPRW.2017.156

  14. **, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for feedforward acceleration. ar**v:1412.5474 (2014)

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965

  18. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

    Chapter  Google Scholar 

  19. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: A deep neural network architecture for real-time semantic segmentation. ar**v:1606.02147 (2016)

  20. Poudel, R.P., Bonde, U., Liwicki, S., Zach, C.: ContextNet: Exploring context and detail for semantic segmentation in real-time. ar**v:1805.04554 (2018)

  21. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized convnet for real-time semantic segmentation. TITS 19(1), 263–272 (2018). https://doi.org/10.1109/TITS.2017.2750080

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v:1409.1556 (2014)

  25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  26. Treml, M., et al.: Speeding up semantic segmentation for autonomous driving. In: NIPS Workshop, vol. 2, p. 7 (2016)

    Google Scholar 

  27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813

  28. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  29. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018). https://doi.org/10.1109/CVPR.2018.00262

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [61806213, 61702134, U1435222].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lulu Yang , Long Lan , **ang Zhang or Zhigang Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Lan, L., Zhang, X., Huang, X., Luo, Z. (2019). Attentional Residual Dense Factorized Network for Real-Time Semantic Segmentation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation