A Tableau Calculus for Non-clausal Maximum Satisfiability

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11714))

Abstract

We define a non-clausal MaxSAT tableau calculus. Given a multiset of propositional formulas \(\phi \), we prove that the calculus is sound in the sense that if the minimum number of contradictions derived among the branches of a completed tableau for \(\phi \) is m, then the minimum number of unsatisfied formulas in \(\phi \) is m. We also prove that it is complete in the sense that if the minimum number of unsatisfied formulas in \(\phi \) is m, then the minimum number of contradictions among the branches of any completed tableau for \(\phi \) is m. Moreover, we describe how to extend the proposed calculus to deal with hard and weighted soft formulas.

This work was supported by Project LOGISTAR from the EU H2020 Research and Innovation Programme under Grant Agreement No. 769142, MINECO-FEDER projects RASO (TIN2015-71799-C2-1-P) and Generalitat de Catalunya SGR 172.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use multisets of formulas instead of sets of formulas because duplicated formulas cannot be collapsed into one formula because then the minimum number of unsatisfied formulas might not be preserved.

References

  1. Abramé, A., Habet, D.: Efficient application of max-sat resolution on inconsistent subsets. In: Proceedings of the 20th International Conference on Principles and Practice of Constraint Programming, CP, Lyon, France, pp. 92–107 (2014)

    Google Scholar 

  2. Abramé, A., Habet, D.: On the resiliency of unit propagation to Max-Resolution. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, pp. 268–274 (2015)

    Google Scholar 

  3. Argelich, J., Li, C.M., Manyà, F., Soler, J.R.: Clause branching in MaxSAT and MinSAT. In: Proceedings of the 21st International Conference of the Catalan Association for Artificial Intelligence, Roses, Spain. Frontiers in Artificial Intelligence and Applications, vol. 308, pp. 17–26. IOS Press (2018)

    Google Scholar 

  4. Argelich, J., Li, C.M., Manyà, F., Soler, J.R.: Clause tableaux for maximum and minimum satisfiability. Logic J. IGPL (2019). https://doi.org/10.1093/jigpal/jzz025

  5. Bofill, M., Garcia, M., Suy, J., Villaret, M.: MaxSAT-based scheduling of B2B meetings. In: Proceedings of the12th International Conference on Integration of AI and OR Techniques in Constraint Programming, CPAIOR, Barcelona, Spain, pp. 65–73 (2015)

    Chapter  Google Scholar 

  6. Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT resolution with the dual rail encoding. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI, New Orleans, Louisiana, USA, pp. 6565–6572 (2018)

    Google Scholar 

  7. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 240–251 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Casas-Roma, J., Huertas, A., Manyà, F.: Solving MaxSAT with natural deduction. In: Proceedings of the 20th International Conference of the Catalan Association for Artificial Intelligence, Deltebre, Spain. Frontiers in Artificial Intelligence and Applications, vol. 300, pp. 186–195. IOS Press (2017)

    Google Scholar 

  9. D’Agostino, M.: Tableaux methods for classical propositional logic. In: D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 45–123. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_2

    Chapter  MATH  Google Scholar 

  10. D’Almeida, D., Grégoire, É.: Model-based diagnosis with default information implemented through MAX-SAT technology. In: Proceedings of the IEEE 13th International Conference on Information Reuse & Integration, IRI, Las Vegas, NV, USA, pp. 33–36 (2012)

    Google Scholar 

  11. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Proceedings of the 18th International Conference on Principles and Practice of Constraint Programming, CP, Québec City, QC, Canada, pp. 941–956 (2012)

    Google Scholar 

  12. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 100–178. Elsevier and MIT Press (2001)

    Google Scholar 

  13. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Proceedings of the National Conference on Artificial Intelligence, AAAI-2006, Boston/MA, USA, pp. 68–73 (2006)

    Google Scholar 

  14. Ignatiev, A., Morgado, A., Marques-Silva, J.: On tackling the limits of resolution in SAT solving. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 164–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_11

    Chapter  MATH  Google Scholar 

  15. Jabbour, S., Mhadhbi, N., Raddaoui, B., Sais, L.: A SAT-based framework for overlap** community detection in networks. In: Proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Part II, PAKDD, Jeju, South Korea, pp. 786–798 (2017)

    Google Scholar 

  16. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-2005, Edinburgh, Scotland, pp. 193–198. Morgan Kaufmann (2005)

    Google Scholar 

  17. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    Article  MathSciNet  Google Scholar 

  18. Li, C.M., Manyà, F., Soler, J.R.: A clause tableaux calculus for MaxSAT. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI-2016, New York, USA, pp. 766–772 (2016)

    Google Scholar 

  19. Li, C.M., Manyà, F., Soler, J.R.: Clausal form transformation in MaxSAT. In: Proceedings of the 49th IEEE International Symposium on Multiple-Valued Logic, ISMVL, Fredericton, Canada, pp. 132–137 (2019)

    Google Scholar 

  20. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. Artif. Intell. 190, 32–44 (2012)

    Article  MathSciNet  Google Scholar 

  21. Manyà, F., Negrete, S., Roig, C., Soler, J.R.: A MaxSAT-based approach to the team composition problem in a classroom. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 164–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71679-4_11

    Chapter  Google Scholar 

  22. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

    Article  MathSciNet  Google Scholar 

  23. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Proceedings of 7th International Conference on Formal Methods in Computer-Aided Design, FMCAD, Austin, Texas, USA, pp. 13–19 (2007)

    Google Scholar 

  24. Smullyan, R.: First-Order Logic. Dover Publications, New York (1995). Second corrected edition, First published 1968 by Springer-Verlag

    Google Scholar 

  25. Xu, H., Rutenbar, R.A., Sakallah, K.A.: Sub-sat: a formulation for relaxed boolean satisfiability with applications in routing. IEEE Trans. CAD Integr. Circuits Syst. 22(6), 814–820 (2003)

    Article  Google Scholar 

  26. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, Ontario, Canada, pp. 1846–1852 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felip Manyà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C.M., Manyà, F., Soler, J.R. (2019). A Tableau Calculus for Non-clausal Maximum Satisfiability. In: Cerrito, S., Popescu, A. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2019. Lecture Notes in Computer Science(), vol 11714. Springer, Cham. https://doi.org/10.1007/978-3-030-29026-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29026-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29025-2

  • Online ISBN: 978-3-030-29026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation