Controlling Muscle-Actuated Articulated Bodies in Operational Space

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

  • 2817 Accesses

Abstract

We develop methods to compute dynamics and control for articulated body systems that are actuated by linear contractile elements. We motivate the conditions under which our mathematical formulation is suitable for modeling muscle actuated robots as well as the human musculoskeletal system. In detail, we: (i) specify the conditions under which sets of piecewise linear contractile muscle fibers (actuators) can model the action of muscle volumes, (ii) use the muscle Jacobian to obtain an expression for predicting how muscle forces produce forces and accelerations at operational points on articulated bodies (muscle-to-task ‘forward’ maps), (iii) use the muscle Jacobian to obtain an expression for predicting the muscle forces required to produce specified forces at operational points on articulated bodies (task-to-muscle ‘inverse’ maps), and (iv) present an interative algorithm for resolving task-to-muscle maps with a proof of convergence and empirical results to show fast (\({\sim }20\)–100 iterations) convergence for detailed human musculoskeletal models with hundreds of muscles and tens of degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We ignore graph topologies at the moment. Accommodating those is feasible using our methods in combination with constraint solving dynamics algorithms. See [9] for an overview.

References

  1. Arnold, A.S., Salinas, S., Asakawa, D.J., Delp, S.L.: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 5(2), 108–119 (2000)

    Google Scholar 

  2. Asakawa, Deanna S., Nayak, Krishna S., Blemker, Silvia S., Delp, Scott L., Pauly, John M., Nishimura, Dwight G., Gold, Garry E.: Real-time imaging of skeletal muscle velocity. J. Magn. Reson. Imaging 18(6), 734–739 (2003)

    Article  Google Scholar 

  3. Blemker, Silvia S., Asakawa, Deanna S., Gold, Garry E., Delp, Scott L.: Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25(2), 441–451 (2007)

    Article  Google Scholar 

  4. Blemker, Silvia S., Delp, Scott L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)

    Article  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Google Scholar 

  6. Choe, B., Ko, H.-S.: Analysis and synthesis of facial expressions with hand-generated muscle actuation basis. In: ACM SIGGRAPH 2005 Courses, p.15. ACM, Los Angeles (2005)

    Google Scholar 

  7. Demircan, E., Besier, T., Menon, S., Khatib, O.: Human motion reconstruction and synthesis of human skills. In: Lenarčič, J., Stanisic, M.M. (eds.) Advances in Robot Kinematics, pp. 283–292. Springer, Berlin (2010)

    Google Scholar 

  8. Dzahir, Mohd Azuwan Mat, Yamamoto, Shin-ichiroh: Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3(2), 120–148 (2014)

    Article  Google Scholar 

  9. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2014)

    Google Scholar 

  10. Featherstone, Roy, Khatib, Oussama: Load independence of the dynamically consistent inverse of the jacobian matrix. Int. J. Robot. Res. 16(2), 168–170 (1997)

    Article  Google Scholar 

  11. Galhano, AM., Tenreiro Machado, J.A., Martins de Carvalho, J.L.: Statistical analysis of muscle-actuated manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 332–337. IEEE, Nice (1992)

    Google Scholar 

  12. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)

    Google Scholar 

  13. Godage, I.S., Branson, D.T., Guglielmino, E., Caldwell, D.G.: Pneumatic muscle actuated continuum arms: modelling and experimental assessment. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4980–4985. IEEE, Saint Paul (2012)

    Google Scholar 

  14. Grzeszczuk, R., Terzopoulos, D.: Automated learning of muscle-actuated locomotion through control abstraction. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 63–70. ACM, New York (1995)

    Google Scholar 

  15. Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43(14), 2709–2716 (2010)

    Google Scholar 

  16. Khatib, Oussama: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  17. Khatib, Oussama: Inertial properties in robotic manipulation: an object-level framework. Int. J. Robot. Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  18. Menon, S., Migimatsu, T., Khatib, O.: A parameterized family of anatomically accurate human upper-body musculoskeletal models for dynamic simulation and control. In: Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 587–594. IEEE, Cancun (2016)

    Google Scholar 

  19. Nakamura, Taro, Tanaka, Daisuke, Maeda, Hiroyuki: Joint stiffness and position control of an artificial muscle manipulator for instantaneous loads using a mechanical equilibrium model. Adv. Robot. 25(3–4), 387–406 (2011)

    Article  Google Scholar 

  20. Nakamura, Yoshihiko, Yamane, Katsu, Fujita, Yusuke, Suzuki, Ichiro: Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Trans. Robot. 21(1), 58–66 (2005)

    Article  Google Scholar 

  21. Nakata, Y., Ide, A., Nakamura, Y., Hirata, K., Ishiguro, H.: Hop** of a monopedal robot with a biarticular muscle driven by electromagnetic linear actuators. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3153–3160. IEEE, St. Paul (2012)

    Google Scholar 

  22. Pillen, S., Tak, R.O, Zwarts, M.J., Lammens, M.M.Y., Verrijp, K.N., Arts, I.M.P., van der Laak, J.A., Hoogerbrugge, P.M., van Engelen, B.G.M., Verrips, A.: Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med. Biol. 35(3), 443–446 (2009)

    Google Scholar 

  23. Pillen, Sigrid, van Alfen, Nens: Skeletal muscle ultrasound. Neurol. Res. 33(10), 1016–1024 (2011)

    Article  Google Scholar 

  24. Pillen, S., van Dijk, J.P., Weijers, G., Raijmann, W., de Korte, C.L., Zwarts, M.J.: Quantitative gray-scale analysis in skeletal muscle ultrasound: a comparison study of two ultrasound devices. Muscle Nerve 39(6):781–786 (2009)

    Google Scholar 

  25. Sardellitti, I., Park, J., Shin, D., Khatib, O.: Air muscle controller design in the distributed macro-mini (dm 2) actuation approach. In: IROS 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1822–1827. IEEE, San Diego (2007)

    Google Scholar 

  26. Seth, A., Matias, R., Veloso, A.P., Delp, S.L.: A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS One, 11(1), e0141028 (2016)

    Google Scholar 

  27. Shin, D., Sardellitti, I., Khatib, O.: A hybrid actuation approach for human-friendly robot design. In: ICRA 2008 IEEE International Conference on Robotics and Automation, pp. 1747–1752. IEEE, Pasadena (2008)

    Google Scholar 

  28. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006)

    Google Scholar 

  29. Thelen, D.G, Anderson, F.C, Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. J. Biomech. 36(3), 321–328 (2003)

    Google Scholar 

  30. Tomori, Hiroki, Nakamura, Taro: Theoretical comparison of Mckibben-type artificial muscle and novel straight-fiber-type artificial muscle. Int. J. Autom. Technol. 5(4), 544–550 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation National Robotics Initiative grant (IIS-1427396, O. Khatib and R. Bajcsy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menon, S., Migimatsu, T., Khatib, O. (2020). Controlling Muscle-Actuated Articulated Bodies in Operational Space. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_69

Download citation

Publish with us

Policies and ethics

Navigation