Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours Using a Quality Diversity Algorithm

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11556))

Included in the following conference series:

Abstract

During the last two decades, various models have been proposed for fish collective motion. These models are mainly developed to decipher the biological mechanisms of social interaction between animals. They consider very simple homogeneous unbounded environments and it is not clear that they can simulate accurately the collective trajectories. Moreover when the models are more accurate, the question of their scalability to either larger groups or more elaborate environments remains open. This study deals with learning how to simulate realistic collective motion of collective of zebrafish, using real-world tracking data. The objective is to devise an agent-based model that can be implemented on an artificial robotic fish that can blend into a collective of real fish. We present a novel approach that uses Quality Diversity algorithms, a class of algorithms that emphasise exploration over pure optimisation. In particular, we use CVT-MAP-Elites [32], a variant of the state-of-the-art MAP-Elites algorithm [25] for high dimensional search space. Results show that Quality Diversity algorithms not only outperform classic evolutionary reinforcement learning methods at the macroscopic level (i.e. group behaviour), but are also able to generate more realistic biomimetic behaviours at the microscopic level (i.e. individual behaviour).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  2. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Calovi, D.S., et al.: Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors. PLoS Computat. Biol. 14(1), e1005933

    Article  Google Scholar 

  4. Cazenille, L.: Qdpy: A python framework for quality-diversity (2018). https://gitlab.com/leo.cazenille/qdpy

  5. Cazenille, L., et al.: Automated calibration of a biomimetic space-dependent model for zebrafish and robot collective behaviour in a structured environment. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P.F.M.J., Prescott, T., Lepora, N. (eds.) Living Machines 2017. LNCS (LNAI), vol. 10384, pp. 107–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63537-8_10

    Chapter  Google Scholar 

  6. Cazenille, L., et al.: How mimetic should a robotic fish be to socially integrate into zebrafish groups? Bioinspiration & Biomimetics 13(2), 025001 (2018). IOP Publishing

    Article  Google Scholar 

  7. Cazenille, L., Bredeche, N., Halloy, J.: Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish. In: Vouloutsi, V., et al. (eds.) Living Machines 2018. LNCS (LNAI), vol. 10928, pp. 85–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95972-6_10

    Chapter  Google Scholar 

  8. Cazenille, L., Bredeche, N., Halloy, J.: Modelling zebrafish collective behaviours with multilayer perceptrons optimised by evolutionary algorithms. ar**v preprint ar**v:1811.11040 (2018)

  9. Collignon, B., Séguret, A., Halloy, J.: A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments. Roy. Soc. Open Sci. 3(1), 150473 (2016)

    Article  MathSciNet  Google Scholar 

  10. Collignon, B., Séguret, A., Chemtob, Y., Cazenille, L., Halloy, J.: Collective departures and leadership in zebrafish. PloS One 14(5), e0216798 (2019). Public Library of Science

    Article  Google Scholar 

  11. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503 (2015)

    Article  Google Scholar 

  12. Cully, A., Demiris, Y.: Quality and diversity optimization: A unifying modular framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2018)

    Article  Google Scholar 

  13. Deutsch, A., Theraulaz, G., Vicsek, T.: Collective motion in biological systems. Interface Focus 2(6), 689 (2012)

    Article  Google Scholar 

  14. Deza, M., Deza, E.: Dictionary of distances. Elsevier (2006)

    Google Scholar 

  15. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: Evolution of repertoire-based control for robots with complex locomotor systems. IEEE Trans. Evol. Comput. 22(2), 314–328 (2018)

    Article  Google Scholar 

  16. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: Deap: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13(July), 2171–2175 (2012)

    Google Scholar 

  17. Heras, F.J., Romero-Ferrero, F., Hinz, R.C., de Polavieja, G.G.: Aggregation rule in animal collectives dynamically changes between majority and minority influence. bioRxiv, p. 400747 (2018)

    Google Scholar 

  18. Heras, F.J., Romero-Ferrero, F., Hinz, R.C., de Polavieja, G.G.: Deep attention networks reveal the rules of collective motion in zebrafish. bioRxiv, p. 400747 (2018)

    Google Scholar 

  19. Herbert-Read, J.E., Romenskyy, M., Sumpter, D.J.: A turing test for collective motion. Biol. Lett. 11(12), 20150674 (2015)

    Article  Google Scholar 

  20. Iizuka, H., Nakamoto, Y., Yamamoto, M.: Learning of individual sensorimotor map** to form swarm behavior from real fish data. In: Artificial Life Conference Proceedings, pp. 179–185. MIT Press (2018)

    Google Scholar 

  21. Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J., Fourcassié, V., Theraulaz, G.: A model of animal movements in a bounded space. J. Theor. Biol. 225(4), 443–451 (2003)

    Article  MathSciNet  Google Scholar 

  22. Jiang, L., et al.: Identifying influential neighbors in animal flocking. PLoS Computat. Biol. 13(11), e1005822

    Article  Google Scholar 

  23. Lehman, J., Stanley, K.O., Miikkulainen, R.: Effective diversity maintenance in deceptive domains. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 215–222. ACM (2013)

    Google Scholar 

  24. Lopez, U., Gautrais, J., Couzin, I.D., Theraulaz, G.: From behavioural analyses to models of collective motion in fish schools. Interface focus 2(6), 693–707 (2012)

    Article  Google Scholar 

  25. Mouret, J.B., Clune, J.: Illuminating search spaces by map** elites. ar**v preprint ar**v:1504.04909 (2015)

  26. Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. Advanced Textbooks in Control and Signal Processing. Springer, Berlin (2000)

    Book  Google Scholar 

  27. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  28. Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  29. Séguret, A., Collignon, B., Cazenille, L., Chemtob, Y., Halloy, J.: Loose social organisation of ab strain zebrafish groups in a two-patch environment. ar**v preprint ar**v:1701.02572 (2017)

  30. Sumpter, D.J., Mann, R.P., Perna, A.: The modelling cycle for collective animal behaviour. Interface Focus 2(6), 764–773 (2012)

    Article  Google Scholar 

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge, USA (2018)

    Google Scholar 

  32. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Trans. Evol. Comput. 22(4), 623–630 (2018)

    Article  Google Scholar 

  33. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  34. Whiteson, S.: Evolutionary computation for reinforcement learning. In: Wiering M., van Otterlo M. (eds.) Reinforcement Learning, vol 12, pp. 325–355. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3_10

    Google Scholar 

  35. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM (2014)

    Google Scholar 

Download references

Acknowledgement

This work was funded by EU-ICT project ‘ASSISIbf’, no. 601074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Cazenille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cazenille, L., Bredeche, N., Halloy, J. (2019). Automatic Calibration of Artificial Neural Networks for Zebrafish Collective Behaviours Using a Quality Diversity Algorithm. In: Martinez-Hernandez, U., et al. Biomimetic and Biohybrid Systems. Living Machines 2019. Lecture Notes in Computer Science(), vol 11556. Springer, Cham. https://doi.org/10.1007/978-3-030-24741-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24741-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24740-9

  • Online ISBN: 978-3-030-24741-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation