Gene Therapy for Coronary Artery Disease

  • Chapter
  • First Online:
Cardiac Surgery

Abstract

Congestive heart failure is the common end point for advanced coronary artery disease and the leading cause of mortality from heart disease. Stents and surgical bypass can address focal obstruction in larger coronary arteries, but diffuse small vessel disease is not amenable to these interventions. Intrinsic recovery is also limited, as adult cardiac muscle does not effectively regenerate after cardiomyocyte death. Cardiac gene therapy uses growth factors, genes or small molecules to alter gene expression for myocardial regeneration. Genes may be used to induce angiogenesis, reduce pathologic fibrosis, induce replication of endogenous cardiomyocytes, or expand existing cardiac progenitor cells into various cardiac subtypes. Delivery options include plasmids, integrative or non-integrative viruses, micro RNA or small molecules. Administration may be achieved systemically or by intracoronary or local injection, although local administration appears to provide key pharmacokinetic advantages. Initial attempts focused on creating new branches from existing blood vessels, often using vascular endothelial growth factor (VEGF). These demonstrated equivocal clinical results due, in part, to inconsistent study design, controls and clinically relevant endpoints as well as incomplete pharmacokinetics data on required gene “dose” or the ideal methods of gene delivery. Early lessons informed the development of cardiac cellular reprogramming, which transforms cardiac fibroblasts into induced cardiomyocytes using defined reprogramming factor cocktails. This approach has delivered improved post-infarct ejection fraction and reduced fibrosis in preclinical models. Gene therapy in cardiac disease is not yet ready for clinical application, but holds great promise for filling an important therapeutic gap in a growing patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASPIRE:

A randomized, controlled, parallel group, multicenter phase 3 study to evaluate the efficacy and safety of Ad5FGF-4 using SPECT myocardIal peRfusion imaging in patients with stable angina pEctoris

AWARE:

Angiogenesis in women with angina pectoris who are not candidates for revascularization

cTnT:

Cardiac Troponin T

FGF:

Fibroblast growth factor

GMT:

Gata4, Mef2c and Tbx5 cardiac reprogramming factors

HGH:

Hepatocyte growth factor (HGH)

HIF-α:

Hypoxia-induced factor alpha

iCMs:

Induced cardiomyocytes

iPSCs:

Induced pluripotent stem cells

KAT301:

Kuopio Angiogenesis Trial 301

miRNA:

Micro RNA

shRNA:

Short hairpin RNA

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

References

  1. Galli A, Lombardi F. Postinfarct left ventricular remodelling: a prevailing cause of heart failure. Cardiol Res Pract. 2016;2016:2579832.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:1810–52.

    Article  PubMed  Google Scholar 

  3. Baran DA, Jaiswal A. Management of the ACC/AHA Stage D patient: mechanical circulatory support. Cardiol Clin. 2014;32:113–24.

    Article  PubMed  Google Scholar 

  4. Kittleson MM, Kobashigawa JA. Management of the ACC/AHA Stage D patient: cardiac transplantation. Cardiol Clin. 2014;32:95–112.

    Article  PubMed  Google Scholar 

  5. Hashimoto H, Olson EN, Bassel-duby R. Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol. 2018;15(10):585–600. https://doi.org/10.1038/s41569-018-0036-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosengart TK, Fallon E, Crystal RG. Cardiac biointerventions: whatever happened to stem cell and gene therapy? Innovations. 2012;7:173–9.

    Article  PubMed  Google Scholar 

  7. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher SA, Zhang H, Doree C, Mathur A, Martin-Rendon E. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2015;9:CD006536.

    Google Scholar 

  9. Nowbar AN, Mielewczik M, Karavassilis M, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ. 2014;348:g2688.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res. 2014;13:532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  12. Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;3:375–86.

    Article  CAS  Google Scholar 

  13. Folkman J. Tumor angiogenesis: therapeutic implications. NEJM. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ Res. 2009;8:724–36.

    Article  CAS  Google Scholar 

  15. Zachary I, Morgan RD. Therapeutic angiogenesis for cardiovascular disease: biological context, challenges, prospects. Heart. 2010;3:181–9.

    Google Scholar 

  16. Patel V, Mathison M, Singh VP, Yang J, Rosengart TK. Direct cardiac cellular reprogramming for cardiac regeneration. Curr Treat Options Cardiovasc Med. 2016;18:58.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel V, Mathison M, Singh VP, Yang J, Rosengart TK. Cardiac regenerative strategies for advanced heart failure. In: Morgan J, Civitello A, Frazier O, editors. Mechanical circulatory support for advanced heart failure. A Texas Heart Institute/Baylor College of Medicine Approach. Cham: Springer; 2018. p. 221–37.

    Chapter  Google Scholar 

  18. Srivastava D, Dewitt N. In vivo cellular reprogramming: the next generation. Cell. 2016;166:1386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naim C, Yerevanian A, Hajjar RJ. Gene therapy for heart failure: where do we stand? Curr Cardiol Rep. 2013;15:333.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rincon MY, VandenDriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovasc Res. 2015;108:4–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyamoto K, Akiyama M, Tamura F, et al. Direct in vivo reprogramming with Sendai virus vectors improves cardiac function after myocardial infarction. Cell Stem Cell. 2018;22:91–103.e105.

    Article  CAS  PubMed  Google Scholar 

  22. Themis M, May D, Coutelle C, Newbold RF. Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy. Gene Ther. 2003;10:1703–11.

    Article  CAS  PubMed  Google Scholar 

  23. Mathison M, Singh VP, Chiuchiolo MJ, et al. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: implications for clinical myocardial regeneration. J Thorac Cardiovasc Surg. 2017;153:329–339.e3.

    Article  PubMed  Google Scholar 

  24. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res. 2012;110:777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110:1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh VP, Mathison M, Patel V, et al. MiR-590 promotes transdifferentiation of porcine and human fibroblasts toward a cardiomyocyte-like fate by directly repressing specificity protein 1. J Am Heart Assoc. 2016;5(11):e003922.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Muraoka N, Yamakawa H, Miyamoto K, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014;33:1565–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cao N, Huang Y, Zheng J, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:1216–20.

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed TM, Stone NR, Berry EC, et al. Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation. 2017;135:978–95.

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Tu W, Fu Y, Wang J, **e X. Chemical-induced cardiac reprogramming in vivo. Cell Res. 2018;28:686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387:1178–86.

    Article  CAS  PubMed  Google Scholar 

  32. Yla-Herttuala S. Gene therapy for heart failure: back to the bench. Mol Ther. 2015;23:1551–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee LY, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg. 2000;69:14–23.

    Article  CAS  PubMed  Google Scholar 

  34. French BA, Mazur W, Geske RS, Bolli R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation. 1994;90:2414–24.

    Article  CAS  PubMed  Google Scholar 

  35. Donahue JK. Cardiac gene therapy: a call for basic methods development. Lancet. 2016;387:1137–9.

    Article  PubMed  Google Scholar 

  36. Kaminsky SM, Rosengart TK, Rosenberg J, et al. Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Hum Gene Ther. 2013;24:948–63.

    Article  CAS  PubMed  Google Scholar 

  37. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ylä-herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J. 2017;38:1365–71.

    PubMed  PubMed Central  Google Scholar 

  39. Kaski JC, Consuegra-Sanchez L. Evaluation of ASPIRE trial: a Phase III pivotal registration trial, using intracoronary administration of Generx (Ad5FGF4) to treat patients with recurrent angina pectoris. Expert Opin Biol Ther. 2013;13:1749–53.

    Article  CAS  PubMed  Google Scholar 

  40. Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485:593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inagawa K, Miyamoto K, Yamakawa H, et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. 2012;111:1147–56.

    Article  CAS  PubMed  Google Scholar 

  43. Mathison M, Singh VP, Gersch RP, et al. “Triplet” polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors. J Thorac Cardiovasc Surg. 2014;148:1656–1664.e2.

    Article  CAS  PubMed  Google Scholar 

  44. Ma H, Wang L, Yin C, Liu J, Qian L. In vivo cardiac reprogramming using an optimal single polycistronic construct. Cardiovasc Res. 2015;108:217–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;10:8243.

    Article  Google Scholar 

  46. Ifkovits JL, Addis RC, Epstein JA, Gearhart JD. Inhibition of TGF-beta signaling increases direct conversion of fibroblasts to induced cardiomyocytes. PLoS One. 2014;9:e89678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ebrahimi B. Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen (Lond). 2015;4:10.

    Google Scholar 

  48. Zhou Y, Wang L, Vaseghi HR, et al. Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell. 2016;3:382–95.

    Article  CAS  Google Scholar 

  49. Zhou Y, Alimohamadi S, Wang L, et al. A loss of function screen of epigenetic modifiers and splicing factors during early stage of cardiac reprogramming. Stem Cells Int. 2018:3814747. https://doi.org/10.1155/2018/3814747.

    Google Scholar 

  50. Wang H, Zhao S, Barton M, Rosengart T, Cooney AJ. Reciprocity of action of increasing Oct4 and repressing p53 in transdifferentiation of mouse embryonic fibroblasts into cardiac myocytes. Cell Reprogram. 2018;20:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patel V, Singh VP, Pinnamaneni JP, et al. p63 silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells. J Thorac Cardiovasc Surg. 2018;156:556–565.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Scott Holmes, a member of the Michael E. DeBakey Department of Surgery at Baylor College of Medicine, for his assistance with figures during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd K. Rosengart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, V.B., Ryan, C.T., Crystal, R.G., Rosengart, T.K. (2020). Gene Therapy for Coronary Artery Disease. In: Raja, S. (eds) Cardiac Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-24174-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24174-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24173-5

  • Online ISBN: 978-3-030-24174-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation