Bifurcations in Smooth and Piecewise Smooth Noninvertible Maps

  • Conference paper
  • First Online:
Difference Equations, Discrete Dynamical Systems and Applications (ICDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 287))

Included in the following conference series:

  • 569 Accesses

Abstract

In the present chapter we recall some basic concepts and results associated with the local and global bifurcations of attractors and their basins in smooth and nonsmooth noninvertible maps, continuous and discontinuous. Such maps appear to be important both from theoretical and applied points of view. Using numerous examples we show that noninvertibility and nonsmoothness, as well as discontinuity of the considered maps lead to peculiar bifurcation phenomena which cannot be observed in smooth invertible maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recall that a critical set LC of a continuous noninvertible map F is defined as the locus of points having at least two coincident rank-1 preimages located on the set \(LC_{-1}\) (which belongs to the set of vanishing determinant of a smooth map, or to the set of nonsmoothness of a piecewise smooth map), \(LC=F(LC_{-1})\). The simplest example is a local extremum of a 1D map which is a critical point of this map.

  2. 2.

    A fixed point or cycle is called expanding if all its eigenvalues of are larger than 1 in modulus.

  3. 3.

    For the proper first return map between the regions corresponding to the cycles with rotation numbers \(m_{1}/n_{1}\) and \(m_{2}/n_{2}\) which are Farey neighbors (i.e., \(\left| m_{1}n_{2}-m_{2}n_{1}\right| =1\)) there exists a region of cycles with rotation number \((m_{1}+m_{2})/(n_{1}+n_{2}).\)

References

  1. Avrutin, V., Gardini, L., Schanz, M.: On a special type of border-collision bifurcations occurring at infinity. Phys. D 239, 1083–1094 (2010)

    Article  MathSciNet  Google Scholar 

  2. Avrutin, V., Gardini, L., Schanz, M., Sushko, I.: Bifurcations of chaotic attractors in one-dimensional maps. Int. J. Bif. Chaos 24(8), 10 (2014) 1440012

    Google Scholar 

  3. Avrutin, V., Eckstein, B., Schanz, M.: The bandcount increment scenario. I: basic structures. Proc. Royal Soc. A 464(2095), 1867–1883 (2008)

    Google Scholar 

  4. Avrutin, V., Eckstein, B., Schanz, M.: The bandcount increment scenario. II: interior structures. Proc. Royal Soc. A 464(2097), 2247–2263 (2008)

    Google Scholar 

  5. Avrutin, V., Schanz, M.: On the fully developed bandcount adding scenario. Nonlinearity 21, 1077–1103 (2008)

    Article  MathSciNet  Google Scholar 

  6. Avrutin, V., Saha, A., Banerjee, S., Sushko, I., Gardini, L.: Dangerous bifurcations revisited. Int. J. Bif. Chaos 26(14), 24 (2016) 1630040

    Google Scholar 

  7. Avrutin, V., Schanz, M., Gardini, L.: Calculation of bifurcation curves by map replacement. Int. J. Bif. Chaos 20, 3105–3135 (2010)

    Article  MathSciNet  Google Scholar 

  8. Avrutin, V., Sushko, I.: A gallery of bifurcation scenarios in piecewise smooth 1D maps. In: Bischi, G.-I., Chiarella, C., Sushko, I. (Eds.), Global Analysis of Dynamic Models for Economics, Finance and Social Sciences. Springer (2013)

    Google Scholar 

  9. Banerjee, S., Karthik, M.S., Yuan, G., Yorke, J.A.: Bifurcations in one-dimensional piecewise smooth maps—theory and applications in switching circuits. IEEE Trans. Circuits Syst.-I: Fund. Theory Appl. 47(3), 389–394 (2000)

    Google Scholar 

  10. Banerjee, S., Ranjan, P., Grebogi, C.: Bifurcations in two-dimensional piecewise smooth maps —theory and applications in switching circuits. IEEE Trans. Circuits Syst.-I: Fund. Theory Appl. 47(5), 633–642 (2000)

    Google Scholar 

  11. Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Phys. Rev. Lett. 80, 30–49 (1998)

    Article  Google Scholar 

  12. Banerjee, S., Grebogi, C.: Border collision bifurcations in two-dimensional piecewise smooth maps. Phys. Rev. E 59, 40–52 (1999)

    Article  Google Scholar 

  13. Beardon, A.F.: Iteration Rational Functions. Springer, N.Y. (1991)

    Book  Google Scholar 

  14. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences 163. Springer (2008)

    Google Scholar 

  15. Bischi, G.I., Chiarella, C., Kopel, M., Szidarovszky, F.: Nonlinear Oligopolies: Stability and Bifurcations. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  16. Bischi, G.I., Gardini, L.: Basin fractalization due to focal points in a class of triangular maps. Int. J. Bif. and Chaos 7(7), 1555–1577 (1997)

    Article  MathSciNet  Google Scholar 

  17. Bischi, G.I., Gardini, L., Mira, C.: Plane maps with denominator. Part I: some generic properties. Int. J. Bif. Chaos 9, 119–53 (1999)

    Google Scholar 

  18. Bischi, G.I., Gardini, L., Mira, C.: Plane maps with denominator. Part II: noninvertible maps with simple focal points, Int. J. Bif. Chaos 13, 2253–77 (2003)

    Google Scholar 

  19. Bischi, G.I., Gardini, L., Mira, C.: Plane maps with denominator. Part III: Non simple focal points and related bifurcations. Int. J. Bif. Chaos 15, 451–496 (2005)

    Google Scholar 

  20. Bischi, G.I., Mira, C., Gardini, L.: Unbounded sets of attraction. Int. J. Bif. Chaos 10, 1437–1469 (2000)

    Article  MathSciNet  Google Scholar 

  21. Bischi, G.I., Gardini, L., Mira, C.: Basin fractalization generated by a two-dimensional family of Z1-Z3- Z1 maps. Int. J. Bif. Chaos 16(3), 647–669 (2006)

    Article  Google Scholar 

  22. Devaney, R.: An Introduction to Chaotic Dynamical Systems. Westview Press (2008)

    Google Scholar 

  23. Frouzakis, C.F., Gardini, L., Kevrekidis, Y.G., Millerioux, G., Mira, C.: On some properties of invariant sets of two-dimensional noninvertible maps. Int. J. Bif. Chaos 7(6), 1167–1194 (1997)

    Article  MathSciNet  Google Scholar 

  24. Gambaudo, J.M., Procaccia, I., Thomae, S., Tresser, C.: New universal scenarios for the onset of chaos in Lorenz-type flows. Phys. Rev. Lett. 57, 925–928 (1986)

    Article  MathSciNet  Google Scholar 

  25. Gambaudo, J.M., Glendinning, P., Tresser, C.: The gluing bifurcation: symbolic dynamics of the closed curves. Nonlinearity 1, 203–214 (1988)

    Article  MathSciNet  Google Scholar 

  26. Ganguli, A., Banerjee, S.: Dangerous bifurcation at border collision: when does it occur? Phys. Rev. E 71 (2005) 057202-1–057202-4

    Google Scholar 

  27. Gardini, L.: Homoclinic bifurcations in n-dimensional endomorphisms, due to expanding periodic points. Nonlinear Anal. Theor. Meth. Appl. 23, 1039–1089 (1994)

    Article  MathSciNet  Google Scholar 

  28. Gardini, L., Avrutin, V., Schanz, M.: Connection between bifurcations on the Poincaré equator and dangerous bifurcations, Iteration Theory, Sharkovsky, A., Sushko, I. (eds.), Grazer Math. Ber., 53–72 (2009)

    Google Scholar 

  29. Gardini, L., Avrutin, V., Sushko, I.: Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps. Int. J. Bif. Chaos 24(2), 30 (2014) 1450024

    Google Scholar 

  30. Gardini, L., Makrooni, R.: Necessary and sufficient conditions of full chaos for expanding Baker-like maps and their use in non-expanding Lorenz maps, (submitted for publication)

    Google Scholar 

  31. Gardini, L., Sushko, I., Avrutin, V., Schanz, M.: Critical homoclinic orbits lead to snap-back repellers. Chaos Solitons Fractals 44, 433–449 (2011)

    Article  MathSciNet  Google Scholar 

  32. Gardini, L., Sushko, I., Naimzada, A.: Growing through chaotic intervals. J. Econ. Theory 143, 541–557 (2008)

    Article  MathSciNet  Google Scholar 

  33. Gardini, L., Tramontana, F., Avrutin, V., Schanz, M.: Border-collision bifurcations in 1D piecewise-linear maps and Leonov’s approach. Int. J. Bif. Chaos 20(10), 3085–3104 (2010)

    Article  MathSciNet  Google Scholar 

  34. Gardini, L., Tramontana, F.: Border collision bifurcations in 1D PWL map with one discontinuity and negative jump: use of the first return map. Int. J. Bif. Chaos 20(11), 3529–3547 (2010)

    Article  MathSciNet  Google Scholar 

  35. Gardini, L., Cathala, J.C., Mira, C.: Contact bifurcations of absorbing and chaotic areas in two-dimensional endomorphisms. In: Forg-Rob, W. (ed.), Iteration Theory. World Scientific, Singapore, pp. 100–111 (1996)

    Google Scholar 

  36. Gardini, L., Fournier-Prunaret, D., Mira, C.: Some contact bifurcations in two-dimensional examples. Grazer Math. Ber. 334, 77–96 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Glendinning, P.: Global bifurcations in flows, new directions in dynamical systems. J. London Math. Soc. Lecture Note Ser., Bedford, T., Swift, J. (eds.)., pp. 120–149. Cambridge University Press (1988)

    Google Scholar 

  38. Graczyk, J., Swiatek, G.: Survey: smooth unimodal maps in the 1990s. Ergod. Theory Dyn. Syst. 19, 263–287 (1999)

    Article  Google Scholar 

  39. Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 1507–1510 (1982)

    Article  MathSciNet  Google Scholar 

  40. Grebogi, C., Ott, E., Yorke, J.A.: Crisis: sudden changes in chaotic attractors and transient chaos. Phys. D 7, 181 (1983)

    Article  MathSciNet  Google Scholar 

  41. Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365 (1987)

    Article  MathSciNet  Google Scholar 

  42. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 4th edn., Applied Mathematical Sciences. Springer (1983)

    Google Scholar 

  43. Gumowski, I., Mira, C.: Dynamique chaotique. Cepadues Editions, Toulose (1980)

    MATH  Google Scholar 

  44. Homburg, A.J.: Some global aspects of homoclinic bifurcations of vector fields, Ph.D. thesis, Rijksuniversiteit Groningen (1993)

    Google Scholar 

  45. Homburg, A.J.: Global aspects of homoclinic bifurcations of vector fields. Mem. Am. Math. Soc. 121 (1996)

    Google Scholar 

  46. Ito, S., Tanaka, S., Nakada, H.: On unimodal transformations and chaos II. Tokyo J. Math. 2, 241–259 (1979)

    Article  MathSciNet  Google Scholar 

  47. Jakobson, M.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys. 81, 39–88 (1981)

    Article  MathSciNet  Google Scholar 

  48. Keener, J.P.: Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc. 261, 589–604 (1980)

    Google Scholar 

  49. Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order With Applications. Kluer Academic Publicher, Dordrecht (1993)

    Book  Google Scholar 

  50. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd edn. Springer (2004)

    Google Scholar 

  51. Leonov, N.N.: Map of the line onto itself. Radiofisika 3, 942–956 (1959)

    Google Scholar 

  52. Lyubich, M.: Regular and stochastic dynamics in the real quadratic family. In: Proceedings of the National Academy of Sciences of the United States of America, 95, 24, pp. 14025–14027 (1998)

    Google Scholar 

  53. Lyubimov, D.V., Pikovsky, A.S., Zaks, M.A.: Universal scenarios of transitions to chaos via homoclinic bifurcations. Math. Phys. Rev. 8 (1989). Harwood Academic, London

    Google Scholar 

  54. Matsuyama, K.: Growing through cycles. Econometrica 67(2), 335–347 (1999)

    Article  Google Scholar 

  55. Maistrenko, Y.L., Maistrenko, V.L., Chua, L.O.: Cycles of chaotic intervals in a time-delayed Chua’s circuit. Int. J. Bifur. Chaos 3, 1557–1572 (1993)

    Article  MathSciNet  Google Scholar 

  56. Marotto, F.R.: Snap-back repellers imply chaos in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 63(1), 199–223 (1978)

    Google Scholar 

  57. Marotto, F.R.: On redefining a snap-back repeller. Chaos Solitons Fractals 25, 25–28 (2005)

    Article  MathSciNet  Google Scholar 

  58. Mira, C.: Chaotic Dynamics: From the One-dimensional Endomorphism to the Two-dimensional Diffeomorphism. World Scientific, Singapore (1987)

    Book  Google Scholar 

  59. Mira, C.: Embedding of a dim1 piecewise continuous and linear Leonov map into a dim2 invertible map. In: Bischi, G.-I., Chiarella, C., Sushko, I. (Eds.), Global Analysis of Dynamic Models for Economics, Finance and Social Sciences. Springer (2013)

    Google Scholar 

  60. Mira, C., Gardini, L., Barugola, A., Cathala, J.C.: Chaotic Dynamics in Two- Dimensional Noninvertible Maps. World Scientific, Singapore (1996)

    Book  Google Scholar 

  61. Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including period two to period three for piecewise smooth systems. Phys. D 57, 39–57 (1992)

    Article  MathSciNet  Google Scholar 

  62. Nusse, H.E., Yorke, J.A.: Border-collision bifurcations for piecewise smooth one-dimensional maps. Int. J. Bif. Chaos 5(1), 189–207 (1995)

    Article  MathSciNet  Google Scholar 

  63. Panchuk, A., Sushko, I., Schenke, B., Avrutin, V.: Bifurcation structure in bimodal piecewise linear map. Int. J. Bif. Chaos 23(12), 24 (2013). 1330040

    Google Scholar 

  64. Panchuk, A., Sushko, I., Avrutin, V.: Bifurcation structures in a bimodal piecewise linear map: chaotic dynamics. Int. J. Bif. Chaos (2015). https://doi.org/10.1016/j.chaos.2015.03.013

    Article  MATH  Google Scholar 

  65. Sharkovsky, A., Kolyada, S., Sivak, A., Fedorenko, V.: Dynamics of One-Dimensional Maps. Kluer Academic Publisher (1997)

    Google Scholar 

  66. Simpson, D.J.W., Meiss, J.D.: Neimark-Sacker bifurcations in planar, piecewise-smooth, continuous maps. SIAM J. Appl. Dyn. Syst. 7, 795–824 (2008)

    Article  MathSciNet  Google Scholar 

  67. Sushko, I., Agliari, A., Gardini, L.: Bistability and bifurcation curves for a unimodal piecewise smooth map. Discrete Contin. Dyn. Syst. Ser. B 5(3), 881–897 (2005)

    Article  MathSciNet  Google Scholar 

  68. Sushko, I., Agliari, A., Gardini, L.: Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: border-collision bifurcation curves. Chaos Solitons Fractals 29(3), 756–770 (2006)

    Article  MathSciNet  Google Scholar 

  69. Sushko, I., Gardini, L.: Center bifurcation for a two-dimensional border-collision normal form. Int. J. Bif. Chaos 18(4), 1029–1050 (2008)

    Article  MathSciNet  Google Scholar 

  70. Sushko, I., Gardini, L.: Center bifurcation of a point on the Poincaré equator. Grazer Mathematische Berichte 354, 254–279 (2009)

    MATH  Google Scholar 

  71. Sushko, I., Gardini, L.: Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps. Int. J. Bif. Chaos 20, 2046–2070 (2010)

    Article  MathSciNet  Google Scholar 

  72. Sushko, I., Avrutin, V., Gardini, L.: Bifurcation structure in the skew tent map and its application as a border collision normal form. J. Diff. Equ. Appl., 1–48 (2015)

    Google Scholar 

  73. Sushko, I., Gardini, L., Avrutin, V.: Nonsmooth one-dimensional maps: some basic concepts and definitions. J. Diff. Equ. Appl., 1–56 (2016)

    Google Scholar 

  74. Tramontana, F., Gardini, L., Avrutin, V., Schanz, M.: Period adding in piecewise linear maps with two discontinuities. Int. J. Bif. Chaos 22(3), 30 (2012) 1250068

    Google Scholar 

  75. Tramontana, F., Sushko, I., Avrutin, V.: Period adding structure in a 2D discontinuous model of economic growth. Appl. Math. Comput. 253, 262–273 (2015)

    MathSciNet  MATH  Google Scholar 

  76. Zhusubaliyev, Zh.T., Mosekilde, E.: Bifurcations and chaos in piecewise-smooth dynamical systems. Nonlinear Sci. A 44 (2003) World Scientific

    Google Scholar 

  77. Zhusubaliyev, Z.T., Mosekilde, E., Maity, S., Mohanan, S., Banerjee, S.: Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. Chaos 16, 1054 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Gardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gardini, L., Sushko, I. (2019). Bifurcations in Smooth and Piecewise Smooth Noninvertible Maps. In: Elaydi, S., Pötzsche, C., Sasu, A. (eds) Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-030-20016-9_4

Download citation

Publish with us

Policies and ethics

Navigation