Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 800))

  • 1688 Accesses

Abstract

While quantum computing has shown great promise in the field of computer science, a lack of actual practical quantum hardware means that mainstream research must rely on simulations. As such, a wide number of quantum computing simulation libraries have been developed, each with their own strengths and weaknesses. A good simulator must not just be accurate, but fast as well. This is especially relevant for quantum systems since the problem size growth for quantum systems is super-exponential. For this paper, we introduce a quantum computing simulation system that takes advantage of multiple gpus to achieve up to 400 times faster simulation time. We discuss the implementation details and provide analysis of its performance. We also demonstrate how the real-world phenomenon of quantum gate incoherence can be accurately simulated by varying the floating point precision and demonstrate it by using a precision of 9 bits, which we evaluate using Randomized Benchmarking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Buluta, I., Nori, F.: Quantum simulators. Science. 326(5949), 108–111 (2009)

    Article  Google Scholar 

  3. Lin, Y.-J., Compton, R.L., Jimenez-Garcia, K., Porto, J.V., Spielman, I.B.: Synthetic magnetic fields for ultracold neutral atoms. Nature. 462(7273), 628–632 (2009)

    Article  Google Scholar 

  4. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A. 71(2), 022316 (2005)

    Article  MathSciNet  Google Scholar 

  5. Gottesman, D.: The heisenberg representation of quantum computers. In: Proceedings of the 22nd International Colloquium on Group Theoretical Methods in Physics, pp. 32–43. International Press, Cambridge (1999)., p. 23

    Google Scholar 

  6. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A. 70(5), 052328 (2004)

    Article  Google Scholar 

  7. Eason, G., Noble, B., Sneddon, I.N.: On certain integrals of Lipschitz-Hankel type involving products of Bessel functions. Philos. Trans. R. Soc. Lond. A. 247, 529–551 (1955)

    Article  MathSciNet  Google Scholar 

  8. Quantiki: List of QC simulators. www.quantiki.org/wiki/list-qc-simulators (25 Apr 2018)

  9. Obenland, K.M., Despain, A.M.: A parallel quantum computer simulator. ar**v preprint quant-ph/9804039 (1998)

    Google Scholar 

  10. Brandl, M.F.: A quantum von Neumann architecture for large-scale quantum computing in systems with long coherence times, such as trapped ions. ar**v preprint ar**v:1702.02583 (2017)

    Google Scholar 

  11. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units – strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4(2), 222–231 (2008)

    Article  Google Scholar 

  12. Maia, J.D., Urquiza Carvalho, G.A., Mangueira Jr., C.P., Santana, S.R., Cabral, L.A., Rocha, G.B.: GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J. Chem. Theory Comput. 8(9), 3072–3081 (2012)

    Article  Google Scholar 

  13. Amariutei, A., Caraiman, S.: Parallel quantum computer simulation on the GPU. In: Proceedings of the 15th International Conference on System Theory, Control, and Computing (ICSTCC), pp. 1–6. IEEE, New York (2011). https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6085728

    Google Scholar 

  14. Gutierrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Parallel quantum computer simulation on the CUDA architecture. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2008. ICCS 2008. Lecture Notes in Computer Science, vol. 5101, pp. 700–709. Springer, Berlin/Heidelberg

    Google Scholar 

  15. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A. 439(1907), 553–558 (1992)

    Article  MathSciNet  Google Scholar 

  16. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A. 52(4), R2493 (1995)

    Article  Google Scholar 

  17. O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93(8), 080502 (2004)

    Article  Google Scholar 

  18. Knill, E.: Quantum computing with realistically noisy devices. Nature. 434(7029), 39 (2005)

    Article  Google Scholar 

  19. Reichardt, B.W.: Quantum universality by state distillation, ar**v preprint quant-ph/0608085 (2006)

    Google Scholar 

  20. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504 (2007)

    Article  Google Scholar 

  21. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A. 77(3), 032322 (2008)

    Article  Google Scholar 

  22. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A. 77(1), 012307 (2008)

    Article  Google Scholar 

  23. Magesan, E., Gambetta, J.M., Emerson, J.: Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106(18), 180504 (2011)

    Article  Google Scholar 

  24. Ryan, C.A., Laforest, M., Laflamme, R.: Randomized benchmarking of single-and multiqubit control in liquid-state NMR quantum information processing. New J. Phys. 11(1), 013034 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under grant number IIA- 1301726. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick C. Harris Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zawad, S., Yan, F., Wu, R., Barford, L., Harris, F.C. (2019). Randomized Benchmarking of Quantum Gates on a GPU. In: Latifi, S. (eds) 16th International Conference on Information Technology-New Generations (ITNG 2019). Advances in Intelligent Systems and Computing, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-030-14070-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14070-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14069-4

  • Online ISBN: 978-3-030-14070-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation