CFD Reconstruction of Blood Hemodynamic Based on a Self-made Algorithm in Patients with Acute Type IIIb Aortic Dissection Treated with TEVAR Procedure

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

Abstract

Background: Combination of computational fluid dynamic (CFD) technique and medical data (AngioCT and USG-Doppler data) allowed preparation of a non-invasive method for blood hemodynamic analysis in type B aortic dissection (TBAD). Materials and methods: Three-dimensional digital models of the aorta were reconstructed using pre- and post-operative data from a 39-year-old patient treated for acute TBAD with thoracic endovascular aortic repair (TEVAR). Moreover, the left renal artery and the right common iliac artery were treated with additional stents. CFD technique was used to quantify the displacement forces acting on the aortic wall in the areas of endograft and validated with USG-Doppler data. The aortic segment was extended from the origin of the aortic arch to the aortic bifurcation. Results: Our results indicated that prostheses implantation improved overall aortic blood flow. We observed that blood flow rate was around two-fold higher in branching arteries of the aorta after surgical procedure. The wall shear stress (WSS) values were lower in all analysed areas. Hence, the overall risk of dissection propagation and rupture was decreased. Conclusion: CFD technique may provide qualitative assessment of hemodynamic forces in the aorta before and after prostheses implantation and may have potential in aiding the therapeutic decision-making process after operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amblard, A., Berre, H.W.L., Bou-Said, B., Brunet, M.: Analysis of type I endoleaks in a stented abdominal aortic aneurysm. Med. Eng. Phys. 31, 27–33 (2009). https://doi.org/10.1016/j.medengphy.2008.03.005

    Article  Google Scholar 

  2. Auer, M., Gasser, T.C.: Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans. Med. Imaging 29, 1022–1028 (2010). https://doi.org/10.1109/TMI.2009.2039579

    Article  Google Scholar 

  3. Blanco, P.J., Pivello, M.R., Urquiza, S.A., Feijoo, R.A.: On the potentialities of 3D-1D coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009). https://doi.org/10.1016/j.jbiomech.2009.01.034

  4. Cheng, Z., et al.: Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132, 051007 (2010). https://doi.org/10.1115/1.4000964

    Article  Google Scholar 

  5. Dake, M.D., et al.: Endovascular stent-graft placement for the treatment of acute aortic dissection. New Engl. J. Med. 340, 1546–1552 (1999). https://doi.org/10.1056/NEJM199905203402004

    Article  Google Scholar 

  6. Doyle, B.J., Callanan, A., Burke, P.E., Grace, P.A., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49, 443–454 (2009). https://doi.org/10.1016/j.jvs.2008.08.064

    Article  Google Scholar 

  7. Duvernois, V., Marsden, A.L., Shadden, S.C.: Lagrangian analysis of hemodynamics data from FSI simulation. Int. J. Numer. Methods Biomed. Eng. 29, 445–461 (2013). https://doi.org/10.1002/cnm.2523

    Article  MathSciNet  Google Scholar 

  8. Georgakarakos, E., Ioannou, C.V., Kamarianakis, Y., Papaharilaou, Y., Kostas, T., Manousaki, E., Katsamouris, A.N.: The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 39, 42–48 (2010). https://doi.org/10.1016/j.ejvs.2009.09.026

    Article  Google Scholar 

  9. Hagan, P.G., et al.: The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA J. Am. Med. Assoc. 283, 897–903 (2000)

    Google Scholar 

  10. Herman, I.M., Brant, A.M., Warty, V.S., Bonaccorso, J., Klein, E.C., Kormos, R.L., Borovetz, H.S.: Hemodynamics and the vascular endothelial cytoskeleton. J. Cell Biol. 105, 291–302 (1987)

    Article  Google Scholar 

  11. Hoshina, K., Sho, E., Sho, M., Nakahashi, T.K., Dalman, R.L.: Wall shear stress and strain modulate experimental aneurysm cellularity. J. Vasc. Surg. 37, 1067–1074 (2003). https://doi.org/10.1067/mva.2003.169

    Article  Google Scholar 

  12. Hoskins, P.R.: Simulation and validation of arterial ultrasound imaging and blood flow. Ultrasound Med. Biol. 34, 693–717 (2008). https://doi.org/10.1016/j.ultrasmedbio.2007.10.017

    Article  Google Scholar 

  13. Karmonik, C., et al.: Longitudinal computational fluid dynamics study of aneurysmal dilatation in a chronic DeBakey type III aortic dissection. J. Vasc. Surg. 56, 260–263, e261 (2012). https://doi.org/10.1016/j.jvs.2012.02.064

  14. Kizilova, N.: Computational approach to optimal transport network construction in biomechanics. Lect. Notes Comput. Sci. 3044, 476–485 (2004)

    Article  Google Scholar 

  15. Lam, S.K., Fung, G.S., Cheng, S.W., Chow, K.W.: A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med. Biol. Eng. Comput. 46, 1129–1138 (2008). https://doi.org/10.1007/s11517-008-0361-8

    Article  Google Scholar 

  16. Nienaber, C.A., et al.: Nonsurgical reconstruction of thoracic aortic dissection by stent-graft placement. New Engl. J. Med. 340, 1539–1545 (1999). https://doi.org/10.1056/NEJM199905203402003

    Article  Google Scholar 

  17. Papathanasopoulou, P., et al.: MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging JMRI 17, 153–162 (2003). https://doi.org/10.1002/jmri.10243

  18. Piechota, A., Polanczyk, A., Goraca, A.: Role of endothelin-1 receptor blockers on hemodynamic parameters and oxidative stress. Pharmacol. Rep. 62, 7 (2010)

    Google Scholar 

  19. Piechota, A., Polanczyk, A., Goraca, A.: Protective effects of endothelin-A receptor antagonist BQ123 against LPS-induced oxidative stress in lungs. Pharmacol. Rep. 63, 7 (2011)

    Google Scholar 

  20. Polanczyk, A., Klinger, M., Nanobachvili, J., Huk, I., Neumayer, C.: Artificial circulatory model for analysis of human and artificial vessels. Appl. Sci. 8, 12 (2018). https://doi.org/10.3390/app8071017

    Article  Google Scholar 

  21. Polanczyk, A., Piechota-Polanczyk, A., Domenig, C., Nanobachvili, J., Huk, I., Neumayer, C.: Computational fluid dynamic accuracy in mimicking changes in blood hemodynamics in patients with acute type IIIb aortic dissection treated with TEVAR. Appl. Sci. 8, 14 (2018). https://doi.org/10.3390/app8081309

    Article  Google Scholar 

  22. Polanczyk, A., Piechota-Polanczyk, A., Stefanczyk, L.: A new approach for the pre-clinical optimization of a spatial configuration of bifurcated endovascular prosthesis placed in abdominal aortic aneurysms. PloS One 12, e0182717 (2017). https://doi.org/10.1371/journal.pone.0182717

    Article  Google Scholar 

  23. Polanczyk, A., Podgorski, M., Polanczyk, M., Veshkina, N., Zbicinski, I., Stefanczyk, L., Neumayer, C.: A novel methodology for the description of biomechanical properties of aortic wall based on three-dimensional fluid structure interaction model. Interact. Cardiovasc. Thorac. Surg. 10 (2018). https://doi.org/10.1093/icvts/ivy252

  24. Polanczyk, A., Podgorski, M., Wozniak, T., Stefanczyk, L., Strzelecki, M.: Computational fluid dynamics as an engineering tool for the reconstruction of hemodynamics after carotid artery stenosis operation: a case study. Medicina 54, 15 (2018). https://doi.org/10.3390/medicina54030042

    Article  Google Scholar 

  25. Polanczyk, A., Podyma, M., Stefanczyk, L., Szubert, W., Zbicinski, I.: A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. J. Biomech. 48, 425–431 (2015). https://doi.org/10.1016/j.jbiomech.2014.12.033

  26. Polanczyk, A., Podyma, M., Stefanczyk, L., Zbicinski, I.: Effects of stent-graft geometry and blood hematocrit on hemodynamic in Abdominal Aortic Aneurysm. Chem. Process Eng. 53–62 (2012). https://doi.org/10.2478/v10176-012-0005-2

  27. Polanczyk, A., Podyma, M., Trebinski, L., Chrzastek, J., Zbicinski, I., Stefanczyk, L.: A novel attempt to standardize results of CFD simulations basing on spatial configuration of aortic stent-grafts. PloS One 11, e0153332 (2016). https://doi.org/10.1371/journal.pone.0153332

    Article  Google Scholar 

  28. Polanczyk, A., Strzelecki, M., Wozniak, T., Szubert, W., Stefanczyk, L.: 3D blood vessels reconstruction based on segmented CT data for further simulations of hemodynamic in human artery branches. Found. Comput. Decis. Sci. 42, 13 (2017). https://doi.org/10.1515/fcds-2017-0018

    Article  Google Scholar 

  29. Polanczyk, A., Wozniak, T., Strzelecki, M., Szubert, W., Stefanczyk, L.: Evaluating an algorithm for 3D reconstruction of blood vessels for further simulations of hemodynamic in human artery branches. In: Signal Processing—Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA 5 (2016). https://doi.org/10.1109/spa.2016.7763595

  30. Shahcheraghi, N., Dwyer, H.A., Cheer, A.Y., Barakat, A.I., Rutaganira, T.: Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124, 378–387 (2002)

    Article  Google Scholar 

  31. Suzuki, T., et al.: Clinical profiles and outcomes of acute type B aortic dissection in the current era: lessons from the International Registry of Aortic Dissection (IRAD). Circulation 108(Suppl 1), II312–317 (2003) https://doi.org/10.1161/01.cir.0000087386.07204.09

  32. Tse, K.M., Chiu, P., Lee, H.P., Ho, P.: Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44, 827–836 (2011). https://doi.org/10.1016/j.jbiomech.2010.12.014

  33. Xenos, M., et al.: Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38, 3323–3337 (2010). https://doi.org/10.1007/s10439-010-0094-3

    Article  Google Scholar 

  34. **ang, J., Tremmel, M., Kolega, J., Levy, E.I., Natarajan, S.K., Meng, H.: Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. J. Neurointerventional Surg. 4, 351–357 (2012). https://doi.org/10.1136/neurintsurg-2011-010089

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by grant number 181110 from the Medical University of Vienna, Department of Surgery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Polanczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polanczyk, A., Piechota-Polanczyk, A., Neumayer, C., Huk, I. (2019). CFD Reconstruction of Blood Hemodynamic Based on a Self-made Algorithm in Patients with Acute Type IIIb Aortic Dissection Treated with TEVAR Procedure. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation