Convolutional Neural Networks for Real-Time and Wireless Damage Detection

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

Structural damage detection methods available for structural health monitoring applications are based on data preprocessing, feature extraction, and feature classification. The feature classification task requires considerable computational power which makes the utilization of centralized techniques relatively infeasible for wireless sensor networks. In this paper, the authors present a novel Wireless Sensor Network (WSN) based on One Dimensional Convolutional Neural Networks (1D CNNs) for real-time and wireless structural health monitoring (SHM). In this method, each CNN is assigned to its local sensor data only and a corresponding 1D CNN is trained for each sensor unit without any synchronization or data transmission. This results in a decentralized system for structural damage detection under ambient environment. The performance of this method is tested and validated on a steel grid laboratory structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karbhari, V.M., Ansari, F. (eds.): Structural Health Monitoring of Civil Infrastructure Systems. Elsevier (2009)

    Google Scholar 

  2. Friswell, M.I., Adhikari, S.: Structural health monitoring using shaped sensors. Mech. Syst. Signal Process. 24(3), 623–635 (2010). https://doi.org/10.1016/j.ymssp.2009.10.009

    Article  Google Scholar 

  3. Wang, Y., Lynch, J.P., Law, K.H.: A wireless structural health monitoring system with multithreaded sensing devices: DESIGN and validation. Struct. Infrastruct. Eng. 3, 103–120 (2007). https://doi.org/10.1080/15732470600590820

    Article  Google Scholar 

  4. Straser, E.G., Kiremidjian, A.S., Meng, T.H., Redlefsen, L.: A modular, wireless network platform for monitoring structures. In: 16th Interational Modal Analysis Conference, pp. 450–456 (1998). https://doi.org/10.1016/S0920-5489(99)91996-7

  5. Klis, R., Chatzi, E.N.: Vibration monitoring via spectro-temporal compressive sensing for wireless sensor networks. Struct. Infrastruct. Eng. 13, 195–209 (2017). https://doi.org/10.1080/15732479.2016.1198395

    Article  Google Scholar 

  6. Klis, R., Chatzi, E., Dertimanis, V.: Experimental validation of spectro-temporal compressive sensing for vibration monitoring using wireless sensor networks. In: Life-Cycle of Engineering Systems: Emphasis Sustainable Civil Infrastructructure—5th International Symposium on Life-Cycle Engineering IALCCE 2016 (2017). https://doi.org/10.1201/9781315375175-91

  7. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Wireless sensor networks for structural health monitoring. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 427–428. ACM (2006, October)

    Google Scholar 

  8. Kijewski-Correa, T.L., Haenggi, M., Antsaklis, P.: Multi-scale wireless sensor networks for structural health monitoring. In: Proceedings of the 2nd International Conference on Structural Health Monitoring and Intelligent Infrastructure (2005)

    Google Scholar 

  9. Mihaylov, M., Tuyls, K., Nowé, A.: Decentralized learning in wireless sensor networks. In: Belgian/Netherlands Artificial Intelligence Conference, pp. 345–346 (2009). https://doi.org/10.1007/978-3-642-11814-2_4

  10. Inman, D.J., Singh, R.C.: Engineering Vibration, vol. 3. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  11. Bae, J.S., Kwak, M.K., Inman, D.J.: Vibration suppression of a cantilever beam using eddy current damper. J. Sound Vib. 284(3–5), 805–824 (2005). https://doi.org/10.1016/j.jsv.2004.07.031

    Article  Google Scholar 

  12. Pilkey, D., Inman, D.: A survey of dam** matrix identification. In: Proceedings-SPIE …. (1998)

    Google Scholar 

  13. Sodano, H.A., Bae, J.S., Inman, D.J., Keith Belvin, W.: Concept and model of eddy current damper for vibration suppression of a beam. J. Sound Vib. 288(4–5), 1177–1196 (2005). https://doi.org/10.1016/j.jsv.2005.01.016

    Article  Google Scholar 

  14. Sodano, H.A., Bae, J.-S., Inman, D.J., Belvin, W.K.: Improved concept and model of eddy current damper. J. Vib. Acoust. 128(3), 294–302 (2006). https://doi.org/10.1115/1.2172256

    Article  Google Scholar 

  15. Inman, D.: Dynamics of asymmetric nonconservative systems. J. Appl. Mech. 50(1), 199–203 (1984). https://doi.org/10.1115/1.3166991

    Article  MathSciNet  MATH  Google Scholar 

  16. Sodano, H.A., Inman, D.J., Belvin, W.K.: Development of a new passive-active magnetic damper for vibration suppression. J. Vib. Acoust. 128(3), 318–327 (2006). https://doi.org/10.1115/1.2172258

    Article  Google Scholar 

  17. Avci, O., Bhargava, A., Al-Smadi, Y., Isenberg, J.: Vibrations serviceability of a medical facility floor for sensitive equipment replacement: evaluation with sparse in situ data. Pract. Period. Struct. Des. Constr. 24(1), 05018006 (2019)

    Article  Google Scholar 

  18. Do, N.T., Gül, M., Abdeljaber, O., Avci, O.: Novel framework for vibration serviceability assessment of stadium grandstands considering durations of vibrations. J. Struct. Eng. 144(2), 04017214 (2017)

    Article  Google Scholar 

  19. Avci, O.: Nonlinear dam** in floor vibrations serviceability: verification on a laboratory structure. In: Conf. Proc. Soc. Exp. Mech. Ser. (2017). https://doi.org/10.1007/978-3-319-54777-0_18

  20. Younis, A., Avci, O., Hussein, M., Davis, B., Reynolds, P.: Dynamic forces induced by a single pedestrian: a literature review. Appl. Mech. Rev. 69(2), 020802 (2017). https://doi.org/10.1115/1.4036327

    Article  Google Scholar 

  21. Catbas, F.N., Celik, O., Avci, O., Abdeljaber, O., Gul, M., Do, N.T.: Sensing and monitoring for stadium structures: a review of recent advances and a forward look. Front. Built Environ. 3, 38 (2017). https://doi.org/10.3389/fbuil.2017.00038

    Article  Google Scholar 

  22. Avci, O.: Modal parameter variations due to joist bottom chord extension installations on laboratory footbridges. J. Perform. Constr. Facil. 29(5), 04014140 (2014)

    Article  Google Scholar 

  23. Avci, O.: Amplitude-dependent dam** in vibration serviceability: case of a laboratory footbridge. J. Archit. Eng. 22, 04016005 (2016). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000211

    Article  Google Scholar 

  24. Celik, O., Do, N.T., Abdeljaber, O., Gul, M., Avci, O., Catbas, F.N.: Recent issues on stadium monitoring and serviceability: a review. In: Conf. Proc. Soc. Exp. Mech. Ser. (2016). https://doi.org/10.1007/978-3-319-29763-7_41

  25. Bhargava, A., Isenberg, J., Feenstra, P.H., Al-Smadi, Y., Avci, O.: Vibrations assessment of a hospital floor for a magnetic resonance imaging unit (MRI) replacement. In: Structural Congress 2013 Bridging Your Passion with Your Profession—Proceedings of 2013 Structural Congress (2013)

    Google Scholar 

  26. Avci, O., Setareh, M., Murray, T.M.: Vibration testing of joist supported footbridges. In: Structural Congress 2010 (2010). https://doi.org/10.1061/41130(369)80

  27. Inman, D.J.: Vibration with Control. Wiley, New York (2006). https://doi.org/10.1002/0470010533

    Book  Google Scholar 

  28. Avci, O., Davis, B.: A study on effective mass of one way joist supported systems. In: Structural Congress 2015—Proceedings of 2015 Structural Congress (2015). https://doi.org/10.1061/9780784479117.073

  29. Davis, B., Avci, O.: Simplified vibration response prediction for slender monumental stairs. In: Structural Congress 2014—Proceedings of 2014 Structural Congress (2014). https://doi.org/10.1061/9780784413357.223

  30. Davis, B., Avci, O.: Simplified vibration serviceability evaluation of slender monumental stairs. J. Struct. Eng. (United States). 141, 04015017 (2015). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001256

    Article  Google Scholar 

  31. Al-Smadi, Y.M., Bhargava, A., Avci, O., Elmorsi, M.: Design of experiments study to obtain a robust 3D computational bridge model. In: Conf. Proc. Soc. Exp. Mech. Ser. (2012). https://doi.org/10.1007/978-1-4614-2413-0_29

  32. Barrett, A.R., Avci, O., Setareh, M., Murray, T.M.: Observations from vibration testing of in-situ structures. In: Proc. Struct. Congr. Expo. (2006). https://doi.org/10.1061/40889(201)65

  33. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Vibration suppression in metastructures using zigzag inserts optimized by genetic algorithms. In: Conf. Proc. Soc. Exp. Mech. Ser. (2017). https://doi.org/10.1007/978-3-319-54735-0_29

  34. Abdeljaber, O., Avci, O., Inman, D.J.: Genetic algorithm use for internally resonating lattice optimization: case of a beam-like metastructure. In: Conf. Proc. Soc. Exp. Mech. Ser. (2016). https://doi.org/10.1007/978-3-319-29751-4_29

  35. Abdeljaber, O., Avci, O., Inman, D.J.: Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms. J. Sound Vib. (2015). https://doi.org/10.1016/j.jsv.2015.11.048

  36. Abdeljaber, O., Avci, O., Inman, D.J.: Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms. J. Sound Vib. 369, 50–62 (2016)

    Article  Google Scholar 

  37. Abdeljaber, O., Avci, O., Inman, D.J.: Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vib. 363, 33–53 (2016). https://doi.org/10.1016/j.jsv.2015.10.029

    Article  Google Scholar 

  38. Chaabane, M., Ben Hamida, A., Mansouri, M., Nounou, H.N., Avci, O.: Damage detection using enhanced multivariate statistical process control technique. In: 2016 17th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. STA 2016—Proc. (2017). https://doi.org/10.1109/STA.2016.7952052

  39. Abdeljaber, O., Avci, O.: Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps. J. Archit. Eng. 22(2), 04016004 (2016). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000205

    Article  Google Scholar 

  40. Abdeljaber, O., Avci, O., Do, N.T., Gul, M., Celik, O., Necati Catbas, F.: Quantification of structural damage with self-organizing maps. In: Conf. Proc. Soc. Exp. Mech. Ser. (2016). https://doi.org/10.1007/978-3-319-29956-3_5

  41. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: A comparative assessment of nonlinear state estimation methods for structural health monitoring. In: Conf. Proc. Soc. Exp. Mech. Ser. (2015). https://doi.org/10.1007/978-3-319-15224-0_5

  42. Mansouri, M., Avci, O., Nounou, H., Nounou, M.: Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system. J. Civ. Struct. Heal. Monit. 5, 493 (2015). https://doi.org/10.1007/s13349-015-0134-7

    Article  Google Scholar 

  43. Avci, O., Abdeljaber, O.: Self-organizing maps for structural damage detection: a novel unsupervised vibration-based algorithm. J. Perform. Constr. Facil. 30, 04015043 (2016). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000801

    Article  Google Scholar 

  44. Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D.: Structural damage detection in real time: implementation of 1D convolutional neural networks for SHM applications. In: Niezrecki, C. (ed.) Struct. Heal. Monit. Damage Detect, vol. 7. Proc. 35th IMAC, A Conf. Expo. Struct. Dyn. 2017, pp. 49–54. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54109-9_6

    Chapter  Google Scholar 

  45. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017). https://doi.org/10.1016/j.jsv.2016.10.043

    Article  Google Scholar 

  46. Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H., Inman, D.J.: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing. 275, 1308–1317 (2018). https://doi.org/10.1016/j.neucom.2017.09.069

    Article  Google Scholar 

  47. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Inman, D.J.: Wireless and Real-Time Structural Damage Detection: A Novel Decentralized Method for Wireless Sensor Networks. J. Sound Vib. 424, 158–172 (2018)

    Article  Google Scholar 

  48. Abdeljaber, O., Younis, A., Avci, O., Catbas, N., Gul, M., Celik, O., Zhang, H.: Dynamic testing of a laboratory stadium structure. In: Geotech. Struct. Eng. Congr. (2016), pp. 1719–1728 (n.d.). https://doi.org/10.1061/9780784479742.147

  49. Ince, T., Kiranyaz, S., Eren, L., Askar, M., Gabbouj, M.: Real-time motor fault detection by 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 63, 7067–7075 (2016). https://doi.org/10.1109/TIE.2016.2582729

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Avci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avci, O., Abdeljaber, O., Kiranyaz, S., Inman, D. (2020). Convolutional Neural Networks for Real-Time and Wireless Damage Detection. In: Pakzad, S. (eds) Dynamics of Civil Structures, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12115-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12115-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12114-3

  • Online ISBN: 978-3-030-12115-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation