3D Object Completion via Class-Conditional Generative Adversarial Network

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11296))

Included in the following conference series:

Abstract

Many robotic tasks require accurate shape models in order to properly grasp or interact with objects. However, it is often the case that sensors produce incomplete 3D models due to several factors such as occlusion or sensor noise. To address this problem, we propose a semi-supervised method that can recover the complete the shape of a broken or incomplete 3D object model. We formulated a hybrid of 3D variational autoencoder (VAE) and generative adversarial network (GAN) to recover the complete voxelized 3D object. Furthermore, we incorporated a separate classifier in the GAN framework, making it a three player game instead of two which helps stabilize the training of the GAN as well as guides the shape completion process to follow the object class labels. Our experiments show that our model produces 3D object reconstructions with high-similarity to the ground truth and outperforms several baselines in both quantitative and qualitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-grained image generation through asymmetric training. CoRR, abs/1703.10155 5 (2017)

    Google Scholar 

  2. Chang, A.X., et al.: ShapeNet: an information-rich 3d model repository. ar**v preprint ar**v:1512.03012 (2015)

  3. Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. ar**v preprint ar**v:1602.02481 (2016)

  4. Chongxuan, L., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 4091–4101 (2017)

    Google Scholar 

  5. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-Encoder-Predictor CNNs and shape synthesis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3 (2017)

    Google Scholar 

  6. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. He, F.L., Wang, Y.C.F., Hua, K.L.: Self-learning approach to color demosaicking via support vector regression. In: International Conference on Image Processing (ICIP). IEEE (2012)

    Google Scholar 

  9. Hua, K.L., Zhang, R., Comer, M., Pollak, I.: Inter frame video compression with large dictionaries of tilings: algorithms for tiling selection and entropy coding. IEEE Trans. Circ. Syst. Video Technol. 22(8), 1136–1149 (2012)

    Article  Google Scholar 

  10. Kinga, D., Adam, J.B.: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), vol. 5 (2015)

    Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  12. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. ar**v preprint ar**v:1512.09300 (2015)

  13. Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  14. Li, H.C., et al.: Dependency-aware quality-differentiated wireless video multicast. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2226–2231. IEEE (2013)

    Google Scholar 

  15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. ar**v preprint ar**v:1411.1784 (2014)

  16. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. ar**v preprint ar**v:1610.09585 (2016)

  17. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. ar**v:1511.06434 (2015)

  18. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic back propagation and approximate inference in deep generative models. ar**v:1401.4082 (2014)

  19. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  20. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  21. Smith, E.J., Meger, D.: Improved adversarial systems for 3d object generation and reconstruction. In: Proceedings of the Annual Conference on Robot Learning (2017)

    Google Scholar 

  22. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  23. Sung, M., Kim, V.G., Angst, R., Guibas, L.: Data-driven structural priors for shape completion. ACM Trans. Graph. (TOG) 34(6), 175 (2015)

    Article  Google Scholar 

  24. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  25. Wu, Z., Song, S., Khosla, A., Tang, X., **ao, J.: 3d ShapeNets for 2.5 d object recognition and next-best-view prediction. Ar**v e-prints 2 (2014)

    Google Scholar 

  26. Wu, Z., et al.: 3d ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Lung Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, YC., Tan, D.S., Cheng, WH., Hua, KL. (2019). 3D Object Completion via Class-Conditional Generative Adversarial Network. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation