Homogeneous Cooling State

  • Chapter
  • First Online:
Granular Gaseous Flows

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 578 Accesses

Abstract

This chapter deals with the problem of the so-called homogeneous cooling state (namely, a homogeneous state where granular temperature monotonically decays in time) for mono- and multicomponent granular gases. Unlike ordinary or classical gases, the Maxwell–Boltzmann velocity distribution is not a solution to the Boltzmann kinetic equation and the exact form of this solution is still unknown. For long times, however, the kinetic equation admits a scaling solution whose form can be approximately obtained by considering the leading terms in a Sonine (Laguerre) polynomial expansion. A new and surprising result (compared to its ordinary gas counterpart) is found for granular mixtures: the well-known energy equipartition theorem is broken for freely cooling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An H-theorem has been proposed [2] at the level of the Kac equation for a gas of inelastic particles. In this paper, the authors propose a functional that can play the role of a Lyapunov functional of a granular gas: it decays monotonically in time and tends to zero in the long time limit. These results have been shown by three different kinds of simulation methods.

  2. 2.

    Coppex et al. [14] attempted a different approach to estimate \(a_2\). Though promising, this alternative method yields poor results for small and moderate inelasticities.

  3. 3.

    In the following we will use Latin indexes \((i,j,\ell , \ldots )\) to refer to the different components of the mixture.

References

  1. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  2. García de Soria, M.I., Maynar, P., Mischler, S., Mouhot, C., Rey, T., Trizac, E.: Towards and H-theorem for granular gases. J. Stat. Mech. P11009 (2015)

    Google Scholar 

  3. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)

    Article  ADS  Google Scholar 

  4. Maaß, C.C., Isert, N., Maret, G., Aegerter, C.M.: Experimental investigation of the freely cooling granular gas. Phys. Rev. Lett. 100, 248001 (2008)

    Article  ADS  Google Scholar 

  5. Tatsumi, S., Murayama, Y., Hayakawa, H., Sano, M.: Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521–539 (2009)

    Article  ADS  Google Scholar 

  6. Harth, K., Trittel, T., Wegner, S., Stannarius, R.: Free cooling of a granular gas of rodlike particles in microgravity. Phys. Rev. Lett. 120, 213301 (2018)

    Article  ADS  Google Scholar 

  7. Brilliantov, N.V., Formella, A., Pöschel, T.: Increasing temperature of cooling granular gases. Nature Comm. 9, 797 (2018)

    Article  ADS  Google Scholar 

  8. Ferziger, J.H., Kaper, G.H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  9. Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  10. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  11. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and heated case. Granular Matter 1, 57–64 (1998)

    Article  Google Scholar 

  12. Brilliantov, N.V., Pöschel, T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424–430 (2006)

    Article  ADS  Google Scholar 

  13. Brilliantov, N.V., Pöschel, T.: Erratum: breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 75, 188 (2006)

    Article  ADS  Google Scholar 

  14. Coppex, F., Droz, M., Piasecki, J., Trizac, E.: On the first Sonine correction for granular gases. Physica A 329, 114–126 (2003)

    Google Scholar 

  15. Montanero, J.M., Santos, A.: Computer simulation of uniformly heated granular fluids. Granular Matter 2, 53–64 (2000)

    Article  Google Scholar 

  16. Santos, A., Montanero, J.M.: The second and third Sonine coefficients of a freely cooling granular gas revisited. Granular Matter 11, 157–168 (2009)

    Article  Google Scholar 

  17. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75–114 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  18. Brey, J.J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996)

    Article  ADS  Google Scholar 

  19. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  20. Huthmann, M., Orza, J.A.G., Brito, R.: Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Granular Matter 2, 189–199 (2000)

    Article  Google Scholar 

  21. Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)

    Article  ADS  Google Scholar 

  22. Krook, M., Wu, T.T.: Formation of Maxwellian tails. Phys. Rev. Lett. 36, 1107–1109 (1976)

    Article  ADS  Google Scholar 

  23. Brey, J.J., Cubero, D., Ruiz-Montero, M.J.: High energy tail in the velocity distribution of a granular gas. Phys. Rev. E 59, 1256–1258 (1999)

    Article  ADS  Google Scholar 

  24. Jenkins, J.T., Mancini, F.: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks. J. Appl. Mech. 54, 27–34 (1987)

    Article  ADS  Google Scholar 

  25. Garzó, V., Dufty, J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706–5713 (1999)

    Article  ADS  Google Scholar 

  26. Martin, P.A., Piasecki, J.: Thermalization of a particle by dissipative collisions. Europhys. Lett. 46, 613–616 (1999)

    Article  ADS  Google Scholar 

  27. Boublik, T.: Hard-sphere equation of state. J. Chem. Phys. 53, 471 (1970)

    Article  ADS  Google Scholar 

  28. Grundke, E.W., Henderson, D.: Distribution functions of multi-component fluid mixtures of hard spheres. Mol. Phys. 24, 269–281 (1972)

    Article  ADS  Google Scholar 

  29. Lee, L.L., Levesque, D.: Perturbation theory for mixtures of simple liquids. Mol. Phys. 26, 1351–1370 (1973)

    Article  ADS  Google Scholar 

  30. Montanero, J.M., Garzó, V.: Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Granular Matter 4, 17–24 (2002)

    Article  Google Scholar 

  31. Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002)

    Article  ADS  Google Scholar 

  32. Pagnani, R., Marconi, U.M.B., Puglisi, A.: Driven low density granular mixtures. Phys. Rev. E 66, 051304 (2002)

    Article  ADS  Google Scholar 

  33. Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Granular Matter 4, 57–63 (2002)

    Article  Google Scholar 

  34. Barrat, A., Trizac, E.: Molecular dynamics simulations of vibrated granular gases. Phys. Rev. E 66, 051303 (2002)

    Article  ADS  Google Scholar 

  35. Clelland, R., Hrenya, C.M.: Simulations of a binary-sized mixture of inelastic grains in rapid shear flow. Phys. Rev. E 65, 031301 (2002)

    Article  ADS  Google Scholar 

  36. Montanero, J.M., Garzó, V.: Energy nonequipartition in a sheared granular mixture. Mol. Simul. 29, 357–362 (2003)

    Article  Google Scholar 

  37. Krouskop, P., Talbot, J.: Mass and size effects in three-dimensional vibrofluidized granular mixtures. Phys. Rev. E 68, 021304 (2003)

    Article  ADS  Google Scholar 

  38. Wang, H., **, G., Ma, Y.: Simulation study on kinetic temperatures of vibrated binary granular mixtures. Phys. Rev. E 68, 031301 (2003)

    Article  ADS  Google Scholar 

  39. Brey, J.J., Ruiz-Montero, M.J., Moreno, F.: Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95, 098001 (2005)

    Article  ADS  Google Scholar 

  40. Schröter, M., Ulrich, S., Kreft, J., Swift, J.B., Swinney, H.L.: Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74, 011307 (2006)

    Article  ADS  Google Scholar 

  41. Wildman, R.D., Parker, D.J.: Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  42. Feitosa, K., Menon, N.: Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  43. Dorfman, J.R., van Beijeren, H.: The kinetic theory of gases. In: Berne, B.J. (ed.) Statistical Mechanics. Part B: Time-Dependent Processes, pp. 65–179. Plenum, New York (1977)

    Google Scholar 

  44. Lutsko, J.F., Brey, J.J., Dufty, J.W.: Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304 (2002)

    Article  ADS  Google Scholar 

  45. Santos, A., Dufty, J.W.: Critical behavior of a heavy particle in a granular fluid. Phys. Rev. Lett. 86, 4823–4826 (2001)

    Article  ADS  Google Scholar 

  46. Brey, J.J., Dufty, J.W., Santos, A.: Kinetic models for granular flow. J. Stat. Phys. 97, 281–322 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  47. Stanley, H.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1971)

    Google Scholar 

  48. Santos, A., Dufty, J.W.: Nonequilibrium phase transition for a heavy particle in a granular fluid. Phys. Rev. E 64, 051305 (2001)

    Article  ADS  Google Scholar 

  49. Jenkins, J.T., Savage, S.B.: A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130, 187–202 (1983)

    Article  ADS  Google Scholar 

  50. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurniy, N.: Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223–256 (1984)

    Article  ADS  Google Scholar 

  51. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3493 (1985)

    Article  ADS  Google Scholar 

  52. Lun, C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539–559 (1991)

    Article  ADS  Google Scholar 

  53. Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy. Phys. Rev. E 56, R6275–R6278 (1997)

    Article  ADS  Google Scholar 

  54. Luding, S., Huthmann, M., McNamara, S.: Zippelius: homogeneous cooling of rough, dissipative particles: theory and simulations. Phys. Rev. E 58, 3416–3425 (1998)

    Article  ADS  Google Scholar 

  55. McNamara, S., Luding, S.: Energy nonequipartition in systems of inelastic rough spheres. Phys. Rev. E 58, 2247–2250 (1998)

    Article  ADS  Google Scholar 

  56. Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Nearly smooth granular gases. Phys. Rev. Lett. 95, 068002 (2005)

    Article  ADS  Google Scholar 

  57. Brilliantov, N.V., Pöschel, T., Kranz, W.T., Zippelius, A.: Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001 (2007)

    Article  ADS  Google Scholar 

  58. Vega Reyes, F., Kremer, G., Santos, A.: Role of roughness on the hydrodynamic homogeneous base state of inelastic hard spheres. Phys. Rev. E (R) 89, 020202 (2014)

    Article  Google Scholar 

  59. Zippelius, A.: Granular gases. Physica A 369, 143–158 (2006)

    Google Scholar 

  60. Buck, B., Macaulay, V.A.: Maximum Entropy in Action. Wiley, New York (1991)

    Google Scholar 

  61. Santos, A., Kremer, G., dos Santos, M.: Sonine approximation for collisional moments of granular gases of inelastic rough spheres. Phys. Fluids 23, 030604 (2011)

    Article  ADS  Google Scholar 

  62. Santos, A., Kremer, G., Garzó, V.: Energy production rates in fluid mixtures of inelastic rough hard spheres. Prog. Theor. Phys. Suppl. 184, 31–48 (2010)

    Article  ADS  Google Scholar 

  63. Kremer, G., Santos, A., Garzó, V.: Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 022205 (2014)

    Article  ADS  Google Scholar 

  64. Herbst, O., Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding spheres with Coulomb friction: relaxation of translational and rotational energy. Granular Matter 2, 211–219 (2000)

    Article  Google Scholar 

  65. Vega Reyes, F., Santos, A.: Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force. Phys. Fluids 27, 113301 (2015)

    Article  ADS  Google Scholar 

  66. Viot, P., Talbot, J.: Thermalization of an anisotropic granular particle. Phys. Rev. E 69, 051106 (2004)

    Article  ADS  Google Scholar 

  67. Piasecki, J., Talbot, J., Viot, P.: Angular velocity distribution of a granular planar rotator in a thermalized bath. Phys. Rev. E 75, 051307 (2007)

    Article  ADS  Google Scholar 

  68. Santos, A.: Interplay between polydispersity, inelasticity, and roughness in the freely cooling regime of hard-disk granular gases. Phys. Rev. E 98, 012904 (2018)

    Article  ADS  Google Scholar 

  69. Vega Reyes, F., Lasanta, A., Santos, A., Garzó, V.: Energy nonequipartition in gas mixtures of inelastic rough hard spheres: the tracer limit. Phys. Rev. E 96, 052901 (2017)

    Article  ADS  Google Scholar 

  70. Khalil, N., Garzó, V.: Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations. J. Chem. Phys. 140, 164901 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Garzó .

Appendix A

Appendix A

In this Appendix the expression (2.32) for \(\mu _2\) by taking \(a_3=0\) for the sake of simplicity is derived. In this case, Eq. (2.20) for \(p=1\) gives

$$\begin{aligned} \mu _{2}= & {} \frac{1}{2}\pi ^{-d}\int {\mathrm {d}}\mathbf{c}_{1}\int {\mathrm {d}}\mathbf{c}_{2}\left\{ 1+a_2\left[ S_2(c_1^2)+S_2(c_2^2)\right] \right\} {\mathrm {e}}^{-(c_1^2+c_2^2)}\nonumber \\&\times \int {\mathrm {d}}\widehat{\varvec{\sigma }} \varTheta (\widehat{{\varvec{\sigma }}}\cdot \mathbf{g}_{12}^*)(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*) \left( c_1^{2}+c_2^{2}-c_1^{'2}-c_2^{'2}\right) , \end{aligned}$$
(2.128)

where only linear terms in \(a_2\) have been considered. Since \(\mathbf {c}_{1}'=\mathbf {c}_{1}- (\widehat{{\varvec{\sigma }}}\cdot \mathbf{g}_{12}^*)\widehat{\varvec{\sigma }}\) and \(\mathbf {c}_{2}'=\mathbf {c}_{2}+(\widehat{{\varvec{\sigma }}}\cdot \mathbf{g}_{12}^*)\widehat{\varvec{\sigma }}\), then

$$\begin{aligned} c_1^{2}+c_2^{2}-c_1'^{2}-c_2'^{2}=\frac{1-\alpha ^2}{2}(\widehat{{\varvec{\sigma }}}\cdot \mathbf{g}_{12}^*)^2. \end{aligned}$$
(2.129)

After performing the angular integral, the collisional moment \(\mu _2\) reduces to

$$\begin{aligned} \mu _{2}=\frac{1}{4}\frac{\pi ^{-(d+1)/2}}{\varGamma \left( \frac{d+3}{2}\right) } (1-\alpha ^2)\int {\mathrm {d}}\mathbf{c}_{1}\int {\mathrm {d}}\mathbf{c}_{2}\left[ 1+2 a_2S_2(c_1^2)\right] g_{12}^{*3}\;{\mathrm {e}}^{-(c_1^2+c_2^2)}, \end{aligned}$$
(2.130)

where use has been made of the result (1.177) for \(k=3\) and the symmetry of the integrand with respect to the change of particle indices 1 and 2 has been accounted for. Equation (2.130) can be rewritten as

$$\begin{aligned} \mu _2=\frac{1}{4}\frac{\pi ^{-(d+1)/2}}{\varGamma \left( \frac{d+3}{2}\right) } (1-\alpha ^2)\left\{ I(1)+a_2\left[ I''(1)+(d+2)I'(1)+\frac{d(d+2)}{4}I(1)\right] \right\} , \end{aligned}$$
(2.131)

with

$$\begin{aligned} I(\epsilon )= \int {\mathrm {d}}\mathbf{c}_{1}\int {\mathrm {d}}\mathbf{c}_{2}\; g_{12}^{*3}\;{\mathrm {e}}^{-(\epsilon c_1^2+c_2^2)} \end{aligned}$$
(2.132)

and the primes denote differentiation with respect to \(\epsilon \), namely, \(I'(1)=(\partial I/\partial \epsilon )_{\epsilon =1}\) and \(I''(1)=(\partial ^2 I/\partial \epsilon ^2)_{\epsilon =1}\). The integral \(I(\epsilon )\) can be performed by the change of variables

$$\begin{aligned} \mathbf {x}=\mathbf {c}_1-\mathbf {c}_2, \quad \mathbf {y}=\epsilon \mathbf {c}_1+\mathbf {c}_2, \end{aligned}$$
(2.133)

with the Jacobian \((1+\epsilon )^{-d}\). According to Eq. (2.133), \(\mathbf {c}_1\) and \(\mathbf {c}_2\) can be expressed in terms of \(\mathbf {x}\) and \(\mathbf {y}\) as

$$\begin{aligned} \mathbf {c}_1=(1+\epsilon )^{-1}(\mathbf {x}+\mathbf {y}), \quad \mathbf {c}_2=(1+\epsilon )^{-1}(\mathbf {y}-\epsilon \mathbf {x}). \end{aligned}$$
(2.134)

The integral \(I(\epsilon )\) can now be easily computed with the result

$$\begin{aligned} I(\epsilon )= & {} (1+\epsilon )^{-d}S_d^2\int _{0}^\infty {\mathrm {d}}x\; x^{d+2}{\mathrm {e}}^{-\epsilon x^2/(1+\epsilon )}\int _{0}^\infty {\mathrm {d}}y\; y^{d-1} {\mathrm {e}}^{- y^2/(1+\epsilon )}\nonumber \\= & {} \pi ^{d} \frac{\varGamma \left( \frac{d+3}{2}\right) }{\varGamma \left( d/2\right) }\epsilon ^{-d/2}\left( \frac{1+\epsilon }{\epsilon }\right) ^{3/2}, \end{aligned}$$
(2.135)

where \(S_d=2\pi ^{d/2}/\varGamma (d/2)\) is the surface area of a d-dimensional unit sphere and use has been made of the symmetry properties of the Gaussian integrals. Use of the result (2.135) in Eq. (2.131) yields

$$\begin{aligned} \mu _2=\frac{S_d}{2\sqrt{2\pi }}(1-\alpha ^2)\left( 1+\frac{3}{16}a_2\right) . \end{aligned}$$
(2.136)

This expression agrees with Eqs. (2.32) and (2.33) when \(a_3=0\). The remaining collision integrals appearing in the monocomponent case can be determined by following similar mathematical steps.

The partial cooling rates \(\zeta _i^*\) of a multicomponent granular mixture are defined by Eq. (2.62). The general property (1.172) leads to

$$\begin{aligned} \zeta _i^*= & {} -\frac{2}{d}\theta _i\sum _j x_j \chi _{ij} \left( \frac{\sigma _{ij}}{\overline{\sigma }}\right) ^{d-1}\mu _{ji}(1+\alpha _{ij}) \int {\mathrm {d}}\mathbf {c}_1 \int \ {\mathrm {d}}\mathbf{c}_{2}\int {\mathrm {d}}\widehat{\varvec{\sigma }} \varTheta (\widehat{{\varvec{\sigma }}}\cdot \mathbf{g}_{12}^*)(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^2 \nonumber \\&\times \varphi _i(c_1) \varphi _j(c_2)\left[ \mu _{ji}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)-2 (\widehat{\varvec{\sigma }}\cdot \mathbf{c}_1)\right] , \end{aligned}$$
(2.137)

where use has been made of the relation

$$\begin{aligned} c_1'^{2}-c_1^2=\mu _{ji}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*) \left[ \mu _{ji}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)-2 (\widehat{\varvec{\sigma }}\cdot \mathbf{c}_1)\right] . \end{aligned}$$
(2.138)

Integration in (2.137) over the unit vector \(\widehat{\varvec{\sigma }}\) can be carried out by employing the result (1.177) and

$$\begin{aligned} \int {\mathrm {d}}\widehat{\varvec{\sigma }}\, \varTheta (\widehat{{\varvec{\sigma }}} \cdot \mathbf{g}_{12}^*)\, (\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^k \widehat{\varvec{\sigma }}=B_{k+1} g_{12}^{* (k-1)}{} \mathbf{g}_{12}^*, \quad k\ge 0. \end{aligned}$$
(2.139)

With these results, Eq. (2.137) becomes

$$\begin{aligned} \zeta _i^*= & {} -\frac{2}{d}\theta _iB_3\sum _j x_j \chi _{ij} \left( \frac{\sigma _{ij}}{\overline{\sigma }}\right) ^{d-1}\mu _{ji}(1+\alpha _{ij}) \int {\mathrm {d}}\mathbf {c}_1 \int \ {\mathrm {d}}\mathbf{c}_{2} \varphi _i(c_1) \varphi _j(c_2)g_{12}^*\nonumber \\&\times \left[ \mu _{ji}(1+\alpha _{ij})g_{12}^{*2}-2 (\mathbf {c}_1 \cdot \mathbf {g}_{12}^*)\right] . \end{aligned}$$
(2.140)

Expression (2.140) is still exact. By substituting the leading Sonine approximation (2.68) into Eq. (2.140) and neglecting nonlinear terms in \(a_2^{(i)}\) we obtain

$$\begin{aligned} \zeta _i^*=-\frac{2}{d}\theta _iB_3\sum _j x_j \chi _{ij} \left( \frac{\sigma _{ij}}{\overline{\sigma }}\right) ^{d-1}\mu _{ji}(1+\alpha _{ij})(\theta _i \theta _j)^{d/2} \left( 1+\var** _i+\var** _j\right) I_\zeta (\theta _i,\theta _j), \end{aligned}$$
(2.141)

where \(B_3=\displaystyle {\frac{\pi ^{(d-1)/2}}{\varGamma \left( \frac{d+3}{2}\right) }}\),

$$\begin{aligned} I_\zeta (\theta _i,\theta _j) = \pi ^{-d}\int {\mathrm {d}}\mathbf {c}_1 \int \ {\mathrm {d}}\mathbf{c}_{2} \, {\mathrm {e}}^{-(\theta _{i}c_{1}^{2}+\theta _{j}c_{2}^{2})} g_{12}^*\left[ \mu _{ji}(1+\alpha _{ij})g_{12}^{*2}-2 (\mathbf {c}_1 \cdot \mathbf {g}_{12}^*)\right] , \end{aligned}$$
(2.142)

and the following operator has been introduced

$$\begin{aligned} \var** _i= \frac{a_2^{(i)}}{2}\left[ \theta _i^2\frac{\partial ^2}{\partial \theta _i^2}+(d+2)\theta _i\frac{\partial }{\partial \theta _i}+\frac{d(d+2)}{4}\right] . \end{aligned}$$
(2.143)

The integral (2.142) can be performed by the change of variables \((\mathbf {c}_1,\mathbf {c}_2) \rightarrow (\mathbf {x}, \mathbf {y})\) where

$$\begin{aligned} \mathbf {x}=\mathbf {c}_{1}-\mathbf {c}_{2}, \quad \mathbf {y}=\theta _{i} \mathbf {c}_{1}+\theta _{j}\mathbf {c}_{2} \end{aligned}$$
(2.144)

with the Jacobian \(\left( \theta _{i}+\theta _{j}\right) ^{-d}\). With this change the integral \(I_{\zeta }(\theta _i,\theta _j)\) can be easily computed and the result is

$$\begin{aligned} I_{\zeta }(\theta _i,\theta _j)=&\; -2\frac{\varGamma \left( \frac{d+3}{2}\right) }{\varGamma \left( \frac{d}{2}\right) }\left( \theta _i\theta _j\right) ^{-d/2}\theta _i^{-3/2} (1+\theta _{ij})^{1/2}\nonumber \\&\left[ 1-\frac{1}{2}\mu _{ji}(1+\alpha _{ij})(1+\theta _{ij})\right] , \end{aligned}$$
(2.145)

where \(\theta _{ij} = \theta _i/\theta _j=m_i T_j/m_j T_i\) is the ratio between the mean-square velocity of the particles of species j relative to that of the particles of species i. Use of (2.141) in (2.145) leads to the final expressions of \(\zeta _i^{(0)}\) and \(\zeta _{ij}^{(1)}\). Their explicit forms can be found in Ref. [70]. In particular, the leading term \(\zeta _i^{(0)}\) is

$$\begin{aligned} \zeta _i^{(0)}=\frac{4\pi ^{\frac{d-1}{2}}}{d\varGamma \left( \frac{d}{2}\right) }\theta _i^{-1/2}\sum _j x_j \chi _{ij}&\left( \frac{\sigma _{ij}}{\overline{\sigma }}\right) ^{d-1}\mu _{ji}(1+\alpha _{ij})(1+\theta _{ij})^{1/2} \nonumber \\&\times \left[ 1-\frac{1}{2}\mu _{ji}(1+\alpha _{ij})(1+\theta _{ij}) \right] . \end{aligned}$$
(2.146)

The fourth-degree collisional moments \(\varLambda _i\) can be evaluated by following similar mathematical steps to those made for \(\zeta _i^*\). First, by applying the scattering rule \(\mathbf {c}_1'=\mathbf {c}_1-\mu _{ji}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)\widehat{\varvec{\sigma }}\), we have the identity

$$\begin{aligned} c_1'^4-c_1^4= & {} 2\mu _{ji}^2(1+\alpha _{ij})^2(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^2 \left[ 2(\widehat{\varvec{\sigma }}\cdot \mathbf{c}_{1})^2+c_1^2+\frac{\mu _{ji}^2}{2} (1+\alpha _{ij})^2(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^2\right] \nonumber \\&-4\mu _{ji}(1+\alpha _{ij})(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*) (\widehat{\varvec{\sigma }}\cdot \mathbf{c}_{1})\left[ c_1^2+ \mu _{ji}^2(1+\alpha _{ij})^2(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^2\right] . \end{aligned}$$
(2.147)

Next, to perform the angular integrations on the right side of (2.67), we need to use the result (2.139) and

$$\begin{aligned} \int {\mathrm {d}}\widehat{\varvec{\sigma }}\,(\widehat{\varvec{\sigma }}\cdot \mathbf{g}_{12}^*)^k \widehat{\varvec{\sigma }}\widehat{\varvec{\sigma }} =\frac{B_{k}}{k+d} g_{12}^{*(k-2)}\left( k\mathbf{g}_{12}^*\mathbf{g}_{12}^*+g_{12}^{*2} \mathsf {I}\right) . \end{aligned}$$
(2.148)

These results allow us to carry out all the angular integrations and write \(\varLambda _i\) as

$$\begin{aligned} \varLambda _i=\frac{B_3}{d+3} \sum _{j} x_j\chi _{ij} \left( \frac{\sigma _{ij}}{\overline{\sigma }}\right) ^{d-1} \mu _{ji}(1+\alpha _{ij}) \left( \theta _i\theta _j\right) ^{d/2}\left( 1+\var** _i+\var** _j\right) I_{\varLambda }(\theta _i,\theta _j), \end{aligned}$$
(2.149)

where the operator \(\var** _i\) is defined by Eq. (2.143) and \(I_{\varLambda }(\theta _i,\theta _j)\) is

$$\begin{aligned} I_{\varLambda }(\theta _i,\theta _j)= & {} \pi ^{-d} \int \,{\mathrm {d}}\mathbf {c}_{1}\,\int \,{\mathrm {d}}\mathbf{c}_{2}\,\, {\mathrm {e}}^{-(\theta _{i}c_{1}^{2}+\theta _{j}c_{2}^{2})}g_{12}^*\nonumber \\&\times \Bigg \{4 \mu _{ji}(1+\alpha _{ij})\left[ 3(\mathbf{c}_1\cdot \mathbf{g}_{12}^*)^2+\frac{d+5}{2}g_{12}^{*2}c_1^2+ \mu _{ji}^2(1+\alpha _{ij})^2g_{12}^{*4}\right] \nonumber \\&-4 (\mathbf{c}_1\cdot \mathbf{g}_{12}^*)\left[ (d+3)c_1^2+4 \mu _{ji}^2(1+\alpha _{ij})^2g_{12}^{*2}\right] \Bigg \}. \end{aligned}$$
(2.150)

The integral \(I_{\varLambda }(\theta _i,\theta _j)\) can be performed by the change of variables (2.144). With this change, the integrations can be performed quite efficiently by using a computer package of symbolic calculation. The result is

$$\begin{aligned} I_{\varLambda }(\theta _i,\theta _j)= & {} (d+3) \frac{\varGamma \left( \frac{d+3}{2}\right) }{\varGamma \left( \frac{d}{2}\right) }\left( \theta _i\theta _j\right) ^{-d/2}\theta _i^{-5/2} (1+\theta _{ij})^{-1/2} \nonumber \\&\times \Bigg \{ -2\left[ d+3+(d+2)\theta _{ij}\right] +\mu _{ji}\left( 1+\alpha _{ij}\right) \left( 1+\theta _{ij} \right) \nonumber \\&\times \left( 11+ d+\frac{d^2+5d+6}{d+3} \theta _{ij} \right) -8\mu _{ji}^{2}\left( 1+\alpha _{ij}\right) ^{2}\left( 1+\theta _{ij} \right) ^{2} \nonumber \\&\,+2\mu _{ji}^{3}\left( 1+\alpha _{ij}\right) ^{3}\left( 1+\theta _{ij} \right) ^{3}\Bigg \}. \end{aligned}$$
(2.151)

Use of (2.151) in (2.149) leads to the explicit forms of \(\varLambda _i^{(0)}\) and \(\varLambda _{ij}^{(1)}\) [70].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garzó, V. (2019). Homogeneous Cooling State. In: Granular Gaseous Flows. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-04444-2_2

Download citation

Publish with us

Policies and ethics

Navigation