Fault Analysis in Analog Circuits Through Language Manipulation and Abstraction

  • Chapter
  • First Online:
Languages, Design Methods, and Tools for Electronic System Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 530))

Abstract

Each year automotive systems are becoming smarter thanks to their enhancement with sensing, actuation and computation features. The recent advancements in the field of autonomous driving have increased even more the complexity of the electronic components used to provide such services. ISO 26262 represents the natural response to the growing concerns in terms of the functional safety of electrical safety-related systems in this area. However, if the functional safety analysis of digital devices is quite a stable methodology, the same analysis for analog components is still in its infancy. This paper aims to explore the problem of fault analysis in analog circuits and how it can be integrated into the design processes with minimum effort. The methodology is based on analog language manipulation, analog fault instrumentation and automatic abstraction. An efficient and comprehensive flow for performing such an activity is proposed and applied to complex case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Downloaded from The Designer’s Guide (www.designers-guide.org).

References

  1. S. Abughannam, L. Wu, W. Mueller, C. Scheytt, W. Ecker, C. Novello, Fault injection and mixed-level simulation for analog circuits – a case study, in ANALOG 2016; 15. ITG/GMM-Symposium (VDE, 2016), pp. 1–6

    Google Scholar 

  2. Accellera: Verilog-AMS Language Reference Manual (2014). http://accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf

  3. J.M. Acken, Special applications of the voting model for bridging faults. IEEE J. Solid State Circuits 29(3), 263–270 (1994). https://doi.org/10.1109/4.278347, http://ieeexplore.ieee.org/document/278347/

    Article  Google Scholar 

  4. S.N. Ahmadian, S.G. Miremadi, Fault injection in mixed-signal environment using behavioral fault modeling in Verilog-A, in Proceedings of the IEEE International Workshop on Behavioral Modeling and Simulation, BMAS (IEEE, 2010), pp. 69–74. https://doi.org/10.1109/BMAS.2010.6156601, https://doi.org/http://ieeexplore.ieee.org/document/6156601/

  5. M.J. Barragan, H.G. Stratigopoulos, S. Mir, H. Le-Gall, N. Bhargava, A. Bal, Practical simulation flow for evaluating analog/mixed-signal test techniques. IEEE Des. Test 33(6), 46–54 (2016). https://doi.org/10.1109/MDAT.2016.2590985, http://ieeexplore.ieee.org/document/7511721/

    Article  Google Scholar 

  6. C. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language. J. Symb. Comput. 33(1), 1–12 (2002). https://doi.org/10.1006/jsco.2001.0494, http://linkinghub.elsevier.com/retrieve/pii/S0747717101904948

    Article  MathSciNet  Google Scholar 

  7. N. Bombieri, M. Ferrari, F. Fummi et al., HIFSuite: tools for HDL code conversion and manipulation. EURASIP JES 2010(1), 1–20 (2010)

    Google Scholar 

  8. M. Born, J. Favaro, O. Kath Application of ISO DIS 26262 in practice, in Proceedings of the 1st Workshop on Critical Automotive applications Robustness & Safety – CARS’10 (ACM Press, New York, 2010), p. 3. https://doi.org/10.1145/1772643.1772645, http://portal.acm.org/citation.cfm?doid=1772643.1772645

  9. Y.J. Chang, C.L. Lee, J.E. Chen, C. Su, Behavior-level fault model for the closed-loop operational amplifier. J. Inf. Sci. Eng. 16(5), 751–766 (2000)

    Google Scholar 

  10. A. Fin, F. Fummi, Laerte++: An object oriented high-level tpg for systemc designs, in Languages for System Specification: Selected Contributions on UML, SystemC, System Verilog, Mixed-Signal Systems, and Property Specification from FDL’03, ed. by C. Grimm (Springer, Boston, 2004), pp. 105–117. https://doi.org/10.1007/1-4020-7991-5_7

    Chapter  Google Scholar 

  11. C. Henderson, J. Soden, C. Hawkins, The behavior and testing implications of Cmos Ic logic gate open circuits, in 1991, Proceedings. International Test Conference, vol. 1 (IEEE, 1991), p. 302 https://doi.org/10.1109/TEST.1991.519522, http://ieeexplore.ieee.org/document/519522/

  12. M. Hillenbrand, M. Heinz, K.D. Müller-Glaser, N. Adlery, J. Matheisz, C. Reichmannz, An approach for rapidly adapting the demands of ISO/DIS 26262 to electric/electronic architecture modeling, in Proceedings of the International Workshop on Rapid System Prototy** (IEEE, 2010), pp. 1–7 https://doi.org/10.1109/RSP.2010.5656336, http://ieeexplore.ieee.org/document/5656336/

  13. ISO: ISO/DIS 26262 – Road vehicles – Functional safety. Technical report, Geneva (2011). https://www.iso.org/standard/43464.html

  14. K. Ken, H. Chang, Top-Down Design and Verification of Mixed-Signal Circuits, Planet Analog, 28 June 2005, pp. 1–8

    Google Scholar 

  15. R. Leveugle, A. Ammari, Early SEU fault injection in digital, analog and mixed signal circuits: a global flow, in Proceedings – Design, Automation and Test in Europe Conference and Exhibition, vol. 1 (The IEEE Computer Society, 2004), pp. 590–595 https://doi.org/10.1109/DATE.2004.1268909, http://ieeexplore.ieee.org/document/1268909/

  16. M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, F. Fummi, Analog models manipulation for effective integration in smart system virtual platforms, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(2), 378–391 (2018). https://doi.org/10.1109/TCAD.2017.2705129, http://ieeexplore.ieee.org/document/7930460/

    Article  Google Scholar 

  17. N. Nagi, A. Chatterjee, J.A. Abraham, Fault simulation of linear analog circuits. Analog Integr. Circ. Sig. Process 4(3), 245–260 (1993). https://doi.org/10.1007/BF01239077, http://springer.longhoe.net/10.1007/BF01239077

    Article  Google Scholar 

  18. R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, Increasing Efficiency of ISO 26262 Verification and Validation by Combining Fault Injection and Mutation Testing with Model Based Development, in Proceedings of the International Conference on Software Engineering and Applications (ICSOFT-EA), Oct 2015 (SciTePress - Science and and Technology Publications, 2013), p. 12 https://doi.org/10.5220/0004592002510257, http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004592002510257

  19. Scheffer, L., Lavagno, L., Martin, G.: EDA for IC Implementation, Circuit Design, and Process Technology (CRC Press, Boca Raton, 2006)

    Google Scholar 

  20. A. Singhee, R.A. Rutenbar, Statistical blockade: very fast statistical simulation and modeling of rare circuit events and its application to memory design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(8), 1176–1189 (2009). https://doi.org/10.1109/TCAD.2009.2020721, http://ieeexplore.ieee.org/document/5166555/

    Article  Google Scholar 

  21. S. Sunter, Closing the loop between analog design and test, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), (IEEE, 2016), pp. 894–897. https://doi.org/10.1109/ISCAS.2016.7527385. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7527385

  22. S. Sunter, K. Jurga, P. Dingenen, R. Vanhooren, Practical random sampling of potential defects for analog fault simulation, in 2014 International Test Conference, vol. 2015-Febru. (IEEE, 2014), pp. 1–10. https://doi.org/10.1109/TEST.2014.7035281, http://ieeexplore.ieee.org/document/7035281/

  23. H. Vierhaus, W. Meyer, U. Glaser, CMOS bridges and resistive transistor faults: IDDQ versus delay effects, in Proceedings of IEEE International Test Conference – (ITC) (IEEE, 1993), pp. 83–91. https://doi.org/10.1109/TEST.1993.470715. http://ieeexplore.ieee.org/document/470715/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Fraccaroli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fraccaroli, E., Stefanni, F., Fummi, F., Zwolinski, M. (2019). Fault Analysis in Analog Circuits Through Language Manipulation and Abstraction. In: Große, D., Vinco, S., Patel, H. (eds) Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in Electrical Engineering, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-030-02215-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02215-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02214-3

  • Online ISBN: 978-3-030-02215-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation