• 435 Accesses

Résumé

La pharmacogénétique est une division de la pharmacologie, qui étudie le rôle et l’impact des facteurs génétiques sur les effets cliniques attendus ou observés survenant lors de la prise d’un traitement. À ce titre, la pharmacogénétique a pour but d’identifier les sujets non-répondeurs à un médicament, d’aider à repérer les sujets à risque pour la survenue d’un événement indésirable, et enfin de préciser la dose la plus adaptée à chaque patient pour un traitement donné. La pharmacogénétique a deux domaines d’investigation fréquemment distingués, la pharmacocinétique et la pharmacodynamique. La pharmacocinétique s’intéresse aux voies biologiques impliquées dans l’absorption, la distribution, l’excrétion et le métabolisme du médicament (de la prise du traitement à la cible pharmacologique). La pharmacodynamique cherche quant à elle à identifier les activités biologiques ciblées par le médicament (tout ce qui se passe en aval de l’activation de la cible). La pharmacogénétique correspond à l’étude des variants d’un ou plusieurs gènes (dénommés candidats), alors que la pharmacogénomique s’intéresse à l’ensemble du génome sans a priori quant à la nature des gènes impliqués.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Gorwood P, Hamon M (2006) Psychopharmacogenetics. Springer-Verlag, New York

    Book  Google Scholar 

  2. Ramoz N, Gorwood P (2012) La recherche génétique en psychiatrie. In Guelfi JD, Rouillon F (eds) Manuel de Psychiatrie 2e Édition. Elsevier Masson, Issy-Les-Moulineaux, p 46–50

    Google Scholar 

  3. Heils A, Teufel A, Petri S, et al. (1996) Allelic variation of human serotonin transporter gene expression. Neurochem 66: 2621–4

    Article  CAS  Google Scholar 

  4. Hoehe MR, Köpke K, Wendel B, et al. (2000) Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet 9: 2895–908

    Article  PubMed  CAS  Google Scholar 

  5. Bond C, LaForge KS, Tian M, et al. (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95: 9608–13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Peng X, Knapp BI, Bidlack JM, Neumeyer JL (2007) Pharmacological properties of bivalent ligands containing butorphan linked to nalbuphine, naltrexone, and naloxone at mu, delta, and kappa opioid receptors. J Med Chem 50: 2254–8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Oslin DW, Berrettini W, Kranzler HR, et al. (2003) A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology 28: 1546–52

    Article  PubMed  CAS  Google Scholar 

  8. Gelernter J, Gueorguieva R, Kranzler HR, et al. (2007) Opioid receptor gene (OPRM1, OPRK1, and OPRD1) variants and response to naltrexone treatment for alcohol dependence: results from the VA Cooperative Study. Alcohol Clin Exp Res 31: 555–63

    PubMed  CAS  Google Scholar 

  9. Anton RF, Oroszi G, O’Malley S, et al. (2008) An evaluation of mu-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch Gen Psychiatry 65: 135–44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Chamorro AJ, Marcos M, Mirón-Canelo JA, et al. (2012) Association of μ-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: a systematic review and meta-analysis. Addict Biol 17: 505–12

    Article  PubMed  CAS  Google Scholar 

  11. Arias A, Feinn R, Kranzler HR (2006) Association of an Asn40Asp (A118G) polymorphism in the mu-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend 83: 262–8

    Article  PubMed  CAS  Google Scholar 

  12. Ray LA, Bujarski S, MacKillop J, et al. (2013) Subjective response to alcohol among alcohol-dependent individuals: effects of the mu-opioid receptor (OPRM1) gene and alcoholism severity. Alcohol Clin Exp Res Suppl 1: E116–24

    Article  Google Scholar 

  13. Purper-Ouakil D, Ramoz N, Lepagnol-Bestel AM, et al. (2011) Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res 69: 69R–76R

    Article  PubMed  Google Scholar 

  14. Purper-Ouakil D, Wohl M, Orejarena S, et al. (2008) Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 147B: 1425–30

    Article  PubMed  CAS  Google Scholar 

  15. Froehlich TE, Epstein JN, Nick TG, et al. (2011) Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 50: 1129–39

    Article  PubMed Central  PubMed  Google Scholar 

  16. Contini V, Rovaris DL, Victor MM, et al. (2013) Pharmacogenetics of response to methylphenidate in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD): A systematic review. Eur Neuropsychopharmacol 23: 550–60

    Article  Google Scholar 

  17. Kieling C, Genro JP, Hutz MH, Rohde LA (2010) A current update on ADHD pharmacogenomics. Pharmacogenomics 11: 407–19

    Article  PubMed  CAS  Google Scholar 

  18. Mick E, Neale B, Middleton FA, et al. (2008) Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B: 1412–8

    Article  PubMed  CAS  Google Scholar 

  19. Michelson D, Read HA, Ruff DD, et al. (2007) CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 46: 242–51

    Article  PubMed  Google Scholar 

  20. Ramoz N, Boni C, Downing AM, et al. (2009) A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology 34: 2135–42

    Article  PubMed  CAS  Google Scholar 

  21. Kim JW, Biederman J, McGrath CL, et al. (2008) Further evidence of association between two NET single-nucleotide polymorphisms with ADHD. Mol Psychiatry 13: 624–30

    Article  PubMed  CAS  Google Scholar 

  22. Neale BM, Medland SE, Ripke S, et al. (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49: 884–97

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lerer B, Segman RH. (2006) Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin Neurosci 8: 85–94

    PubMed Central  PubMed  Google Scholar 

  24. Risselada AJ, Mulder H, Heerdink ER, Egberts TC (2011) Pharmacogenetic testing to predict antipsychotic-induced weight gain: a systematic review. Pharmacogenomics 12: 1213–27

    Article  PubMed  CAS  Google Scholar 

  25. Zhang JP, Malhotra AK (2011) Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 7: 9–37

    Article  PubMed Central  PubMed  Google Scholar 

  26. Koning JP, Vehof J, Burger H, et al. (2012) Association of two DRD2 gene polymorphisms with acute and tardive antipsychotic-induced movement disorders in young Caucasian patients. Psychopharmacology (Berl) 219: 727–36

    Article  CAS  Google Scholar 

  27. Lieberman JA, Stroup TS, McEvoy JP, et al. (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353: 1209–23

    Article  PubMed  CAS  Google Scholar 

  28. Liu Q, Jamba M, Patrick C 3rd, et al. (2012) Targeted pharmacogenetic analysis of antipsychotic response in the CATIE study. Pharmacogenomics 13: 1227–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. McClay JL, Adkins DE, Aberg K, et al. (2011) Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 16: 76–85

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Ikeda M, Tomita Y, Mouri A, et al. (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 67: 263–9

    Article  PubMed  CAS  Google Scholar 

  31. Adkins DE, Aberg K, McClay JL, et al. (2011) Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry 16: 321–32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Zanardi R, Benedetti F, Di Bella D, et al. (2000) Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 20: 105–7

    Article  PubMed  CAS  Google Scholar 

  33. Karg K, Burmeister M, Shedden K, Sen S (2011) The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 68: 444–54

    Article  PubMed Central  PubMed  Google Scholar 

  34. Binder EB, Salyakina D, Lichtner P, et al. (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36: 1319–25

    Article  PubMed  CAS  Google Scholar 

  35. Ising M, Lucae S, Binder EB, et al. (2009) A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 66: 966–75

    Article  PubMed  CAS  Google Scholar 

  36. Laje G, Perlis RH, Rush AJ, McMahon FJ (2009) Pharmacogenetics studies in STAR*D: strengths, limitations, and results. Psychiatr Serv 60: 1446–57

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lekman M, Laje G, Charney D, et al. (2008) The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry 63: 1103–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Horstmann S, Lucae S, Menke A, et al. (2010) Polymorphisms in GRIK4, HTR2A, and FKBP5 show interactive effects in predicting remission to antidepressant treatment. Neuropsychopharmacology 35: 727–40

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Binder EB, Owens MJ, Liu W, et al. (2010) Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch Gen Psychiatry 67: 369–79

    Article  PubMed  CAS  Google Scholar 

  40. Licinio J, O’Kirwan F, Irizarry K, et al. (2004) Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 9: 1075–82

    Article  PubMed  CAS  Google Scholar 

  41. Papiol S, Arias B, Gastó C, et al. (2007) Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord 104: 83–90

    Article  PubMed  CAS  Google Scholar 

  42. Binder EB, Nemeroff CB (2010) The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 15: 574–88

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Velders FP, Kuningas M, Kumari M, et al. (2011) Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology 36: 1053–61

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Uher R, Huezo-Diaz P, Perroud N, et al. (2009) Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J 9: 225–33

    Article  PubMed  CAS  Google Scholar 

  45. Uher R, Perroud N, Ng MY, et al. (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167: 555–64

    Article  PubMed  Google Scholar 

  46. Garriock HA, Kraft JB, Shyn SI, et al. (2010) A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 67: 133–8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Tansey KE, Guipponi M, Perroud N, et al. (2012) Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med 9: e1001326

    Article  PubMed Central  PubMed  Google Scholar 

  48. GENDEP Investigators, MARS Investigators, STAR*D Investigators (2013) Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry 170: 207–17

    Article  Google Scholar 

  49. Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15: 473–500

    Article  PubMed  CAS  Google Scholar 

  50. Perroud N (2011) Suicidal ideation during antidepressant treatment: do genetic predictors exist? CNS Drugs 25: 459–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ramoz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Ramoz, N., Voegeli, G., Gorwood, P. (2014). Intérêt de la pharmacogénétique en psychiatrie. In: Apport des neurosciences à la psychiatrie clinique. Springer, Paris. https://doi.org/10.1007/978-2-8178-0505-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0505-4_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0504-7

  • Online ISBN: 978-2-8178-0505-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation