• 441 Accesses

Résumé

Les maladies psychiatriques sont des maladies complexes multifactorielles et polygéniques c’est-à-dire faisant intervenir plusieurs gènes dont les effets se combinent entre eux et avec des facteurs environnementaux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demily C, Thibaut F (2008) Facteurs de risque environnementaux à la schizophrénie. Ann Med Psychol 166: 606–11

    Google Scholar 

  2. Thibaut F (2003) Génétique de la schizophrénie, Éd. J. Libbey, Paris, 150p

    Google Scholar 

  3. Demily C, Thibaut F (2005) Will genetics allow for the differentiation of schizophrenia and maniac-depressive psychosis?. Encéphale 31(2): 23–7

    Google Scholar 

  4. Craddock N, O’Donovan MC, Owen MJ (2009) Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or “schizoaffective”) psychoses. Schizophr Bull 35(3): 482–90

    Article  PubMed Central  PubMed  Google Scholar 

  5. Delavenne H, Garcia FD, Thibaut F (2013) Grands axes de recherche sur la schizophrénie. Revue Prat 63(3): 359–63

    Google Scholar 

  6. Shih RA, Belmonte PL, Zandi PP (2004) A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int Rev Psychiatry 16(4): 260–83

    Article  PubMed  Google Scholar 

  7. Thibaut F (2006) Schizophrenia: an example of complex genetic disease. World J Biol Psychiatry 7(4): 194–7

    Article  PubMed  Google Scholar 

  8. Ramoz N, Gorwood P (2007) La recherche génétique en psychiatrie. In Manuel de psychiatrie, éd. Masson, Paris

    Google Scholar 

  9. Roy MA, Mérette C, Maziade M (2001) Introduction à la psychiatrie génétique: progrès vers la découverte des gènes de susceptibilité aux troubles psychiatriques. Rev Can Psychiatrie 46: 52–60

    CAS  Google Scholar 

  10. Gottesman II, Beterlsen A (1989) Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’s Danish identical and fraternal discordant twins. Arch Gen Psychiatry 46(10): 867–72

    Article  PubMed  CAS  Google Scholar 

  11. Kendler KS, Heath AC, Neale MC, et al. (1993) Alcoholism and major depression in women. A twin study of the causes of comorbidity. Arch Gen Psychiatry 50(9): 690–98

    Article  PubMed  CAS  Google Scholar 

  12. Ducci F, Goldman D (2012) The genetic basis of addictive disorders. Psychiatr Clin North Am 35(2): 495–519

    Article  PubMed Central  PubMed  Google Scholar 

  13. Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, et al. (2009) Genomewide association studies: history, rationale and prospects for psychiatric disorders. Am J Psychiatry 166: 540–56

    Article  PubMed  Google Scholar 

  14. Gershon ES, Cloninger RC (1994) Genetic approaches to mental disorders. Washington DC, American Psychiatric Press

    Google Scholar 

  15. Bergen SE, Petryshen SL (2012) Genome-wide association studies of schizophrenia: does bigger leads to better results? Curr Opin Psychiatry 25(2): 76–82

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ioannidis JP, Gwinn M, Little J, et al. (2006) A road map for efficient and reliable human genome epidemiology. Nat Genet 38: 3–5

    Article  PubMed  CAS  Google Scholar 

  17. DeLisi LE, Faraone SV (2006) When is a “positive” association truly a “positive” in psychiatric genetics? Am J Med Genet 141B: 319–22

    Article  PubMed  Google Scholar 

  18. Sullivan PF, Owe MJ, O’Donovan MC, Freedman MD (2006) Genetics. In Lieberman, J.A., Strop, T.S., Perkins, D.O., Eds. The American psychiatric publishing textbook of schizophrenia. Washington D.C., American Psychiatry Publishing Inc. 39–54

    Google Scholar 

  19. Shi J, Levinson DF, Duan J, et al. (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460(7256): 753–757

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Stefansson H, Ophoff RA, Steinberg S, et al. (2009) Common variants conferring risk of schizophrenia. Nature 460(7256): 744–47

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Tiwari AK, Zai CC., Müller DJ., Kennedy JL., (2010) — Genetics in schizophrenia: where are we and what next? Dialogues Clin Neurosci, 12(3), 289–303.

    PubMed Central  PubMed  Google Scholar 

  22. Lee KW., Woon PS, Teo YY, Sim K (2012) Genome wide association studies (GWAS) and copy number variation (CNVs) studies of the major psychoses: What have we learnt? Neurosci Biobehav Rev 36: 556–71

    Article  PubMed  CAS  Google Scholar 

  23. Lamont EW, Coutu DL, Cermakian N, Boivin DB (2012) Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci 2010 47(1): 27–35

    Google Scholar 

  24. Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60: 132–40

    Article  PubMed  CAS  Google Scholar 

  25. International Schizophrenia Consortium, Purcell SM, Wray NR, et al. (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256): 748–52

    PubMed  CAS  Google Scholar 

  26. Williams HJ, Craddock N, Russo G, et al. (2012) Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet 20(2): 387–91

    Article  Google Scholar 

  27. Malhotra D, Sebat J (2012) CNVs: harbinger of a rare variant revolution in psychiatric genetics. Cell 148(6): 1223–41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210): 237–41

    Article  Google Scholar 

  29. Stefansson H, Rujescu D, Cichon S, et al. (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455(7210): 232–6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Freedman R, Coon H, Myles-Worsley M (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci USA 94(2): 587–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Raux G, Bonnet-Brilhault F, Louchart S, et al. (2002) The-2 bp deletion in exon 6 of “alpha 7-like” nicotinic receptor subunit gene is a risk factor for the P50 sensory gating deficit. Mol Psychiatry 7: 1006–11

    Article  PubMed  CAS  Google Scholar 

  32. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr, 160: 636–45

    Article  PubMed  Google Scholar 

  33. Louchart-de la Chapelle S, Levillain D, Ménard JF, et al. (2005) P50 inhibitory gating deficit is correlated with the negative symptomatology of schizophrenia. Psychiatry Res 136(1): 27–34

    Article  PubMed  Google Scholar 

  34. Louchart-de la Chapelle S, Nkam I, Houy E, et al. (2005) A concordance study of three electrophysiological measures in schizophrenia. Am J Psychiatry 162: 466–74

    Article  PubMed  Google Scholar 

  35. Allen AJ, Griss ME, Folley BS, et al. (2009) Endophenotypes in schizophrenia: a selective review. Schizophrenia Res 109: 24–37

    Article  Google Scholar 

  36. Leonard S, Freedman R (2006) Genetics of chromosome 15q13–q14 in schizophrenia. Biol Psychiatry 60: 115–22

    Article  PubMed  CAS  Google Scholar 

  37. Flint J, Munafò MR (2007) The endophenotype concept in psychiatric genetics. Psychol Med 37(2): 163–80

    Article  PubMed Central  PubMed  Google Scholar 

  38. Porteous DJ, Thomson P, Brandon NJ, et al. (2006) The genetics and biology of DISC1. An emerging role in psychosis and cognition. Biol Psychiatry 60: 123–31

    Article  PubMed  CAS  Google Scholar 

  39. Thomson PA, Malavasi ELV, Grünewald E, et al. (2013) DISC1 genetics, biology and psychiatric illness. Front Biol 8(1): 1–31

    Article  CAS  Google Scholar 

  40. Pickard BS, Malloy MP, Porteous DJ, et al. (2005) Disruption of a brain transcription factor NPAS3 is associated with schizophrenia and learning disability. Am J Med Genet B Neuropsychiatr Genet 136(1): 26–32

    Article  Google Scholar 

  41. Pickard BS, Malloy MP, Christoforou A, et al. (2006) Cytogenetic and genetic evidence supports a role for the kainite-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 11(9): 847–57

    Article  PubMed  CAS  Google Scholar 

  42. Blackwood DHR, Thiagarajah T, Malloy B, et al. (2008) Chromosome abnormalities, mental retardation, and the search for genes in bipolar disorder and schizophrenia. Neurotoxicity Res 14(2–3): 113–20

    Article  CAS  Google Scholar 

  43. Pieper AA, Wu X, Han TW, et al. (2005) The neuronal domain PAS protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Aca. Sci USA 102(39): 14052–7

    Article  CAS  Google Scholar 

  44. Jacquet H, Berthelot J, Bonnemains C, et al. (2003) The severe form of type I hyperprolinaemia results from homozygous inactivation of the PRODH gene. J Med Genet 40(1): 7

    Article  Google Scholar 

  45. Jacquet H, Demily C, Hecketsweiler B, et al. (2005) Hyperprolinemia is a risk factor for schizoaffective disorder. Mol Psychiatry 10: 479–85

    Article  PubMed  CAS  Google Scholar 

  46. Liu H, Heath SC, Sobin C, et al. (2002) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99: 3717–22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Raux G, Bumsel E, Hecketsweiler B, et al. (2007) Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genetics 16(1): 83–91

    Article  CAS  Google Scholar 

  48. Paterlini M, Zakharenko SS, Lai WS, et al. (2005) Transcriptional and behavioural interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 8(11): 1586–94

    Article  PubMed  CAS  Google Scholar 

  49. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-O-Methyltransferase, cognition, and psychosis: Val 158 Met and beyond. Biol Psychiatry 60 141–151

    Article  PubMed  CAS  Google Scholar 

  50. Heinzel S, Dresler T, Baehne CG, et al. (2012) COMT × DRD4 epistasis impacts prefrontal cortex function underlying response control. Cereb Cortex 23(6): 1453–62

    Article  PubMed  Google Scholar 

  51. Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14: R11–R18

    Article  PubMed  CAS  Google Scholar 

  52. Abkarian S, Sung-Huang H (2009) Epigenetic regulation in human brain-focus on histone lysine methylation. Biol Psychiatry 65: 198–203

    Article  Google Scholar 

  53. Machado-Vieira R, Ibrahim L, Zarate CA (2011) Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Ther 17(6): 699–704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Labrie V, Pai S, Petronis A (2012) Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 28(9): 427–35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Fatemi HS, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bull 35(3): 528–48

    Article  Google Scholar 

  56. Liu CY, Sawa A, Jaaro-Peled H (2012) Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 45(1): 48–56

    Article  CAS  Google Scholar 

  57. Mirnics K, Levitt P, Lewis DA (2005) Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60: 163–76

    Article  Google Scholar 

  58. Glatt SJ, Cohen OS, Faraone SV, Tsuang MT (2011) Dysfunctional gene splicing as a potential contributor to neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 156B(4): 382–92

    Article  PubMed Central  PubMed  Google Scholar 

  59. Perkins DO, Jeffries C, Sullivan P (2005) Expanding the “central dogma”: the regulatory role of non protein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 10(1): 69–78

    Article  PubMed  CAS  Google Scholar 

  60. Caspi A, Moffitt TE, Cannon M, et al. (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the Catechol-O-Methyltransferase gene: longitudinal evidence of a gene × environment interaction. Biol Psychiatry 57: 1117–27

    Article  PubMed  CAS  Google Scholar 

  61. Meaney MJ, Szyf M, Secki JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13(7): 269–277

    Article  PubMed  CAS  Google Scholar 

  62. Risch N, Herrell R, Lehner T, et al. (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a metaanalysis. JAMA 301(23): 2462–71

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Thibaut .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Thibaut, F. (2014). L’apport de la génétique à la psychiatrie. In: Apport des neurosciences à la psychiatrie clinique. Springer, Paris. https://doi.org/10.1007/978-2-8178-0505-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0505-4_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0504-7

  • Online ISBN: 978-2-8178-0505-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation