Imagerie des flux aortiques par IRM et mécanique des fuides: applications cliniques sur la pathologie aortique thoracique

  • Chapter
Imagerie en coupes du coeur et des vaisseaux

Résumé

L’évaluation du risque de rupture d’une pathologie de l’aorte uniquement sur la base du diamètre maximum est tout à fait insufsante et les critères doivent tenir compte de deux paramètres essentiels, l’augmentation de la pression pariétale et la diminution de la résistance de la paroi. Pour ces diférentes raisons, de nombreuses études hémodynamiques ont été réalisées ces dernières années sur la pathologie aortique. Celles-ci ont montré les limites de la loi de Laplace et l’intérêt de l’évaluation par les CFD de diférents paramètres hémodynamiques. Ces évaluations mathématiques permettent d’apprécier les diférentes forces régnant au sein de la lumière vasculaire ainsi que sur la paroi in vivo.

Les développements futurs de ces modèles d’évaluation de la rhéologie de la paroi aideront sans aucun doute la prise de décision thérapeutique et la surveillance des procédures endovasculaires.

En ayant ces outils, des études prospectives devraient valider ces méthodes et préciser la place de ces nouvelles techniques d’imagerie et fonctionnelles pour la décision thérapeutique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Elefteriades JA (2002) Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Torac Surg 74: S1877–80; discussion S92-8

    Article  Google Scholar 

  2. Elefteriades JA, Rizzo JA, Coady MA (1999) Toracic aorta. Radiology 211: 889

    PubMed  CAS  Google Scholar 

  3. Kouchoukos NT, Dougenis D (1997) Surgery of the thoracic aorta. N Engl J Med 336: 1876–88

    Article  PubMed  CAS  Google Scholar 

  4. Svensson LG, Kouchoukos NT, Miller DC et al. (2008) Expert consensus document on the treatment of descending thoracic aortic disease using endovascular stent-grafts. Ann Torac Surg 85 (1 Suppl): S1–41

    Article  Google Scholar 

  5. Ekaterinaris JA, Ioannou CV, Katsamouris AN (2006) Flow dynamics in expansions characterizing abdominal aorta aneurysms. Ann Vasc Surg 20: 351–9

    Article  PubMed  Google Scholar 

  6. Fillinger MF, Raghavan ML, Marra S P, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36: 589–97

    Article  PubMed  Google Scholar 

  7. Raghavan ML, Fillinger MF, Marra S P, Naegelein B P, Kennedy FE (2005) Automated methodology for determination of stress distribution in human abdominal aortic aneu-rysm. J Biomech Eng 127: 868–71

    Article  PubMed  Google Scholar 

  8. Wood NB, Weston SJ, Kilner PJ, Gosman AD, Firmin DN (2001) Combined MR imaging and CFD simulation of fow in the human descending aorta. J Magn Reson Imaging 13: 699–713

    Article  PubMed  CAS  Google Scholar 

  9. Frydrychowicz A, Harlof A, Jung B et al. (2007) Time-resolved, 3-dimensional magnetic resonance fow analysis at 3 T: visualization of normal and pathological aortic vascular he-modynamics. J Comput Assist Tomogr 31: 9–15

    Article  PubMed  Google Scholar 

  10. van Herwaarden JA, Bartels LW, Muhs BE et al. (2006) Dynamic magnetic resonance an-giography of the aneurysm neck: conformational changes during the cardiac cycle with possible consequences for endograft sizing and future design. J Vasc Surg 44: 22–8

    Article  PubMed  Google Scholar 

  11. Muhs BE, Vincken KL, van Prehn J et al. (2006) Dynamic cine-CT angiography for the evaluation of the thoracic aorta; insight in dynamic changes with implications for thoracic endograft treatment. Eur J Vasc Endovasc Surg 32: 532–6

    Article  PubMed  CAS  Google Scholar 

  12. Frauenfelder T, Lotfey M, Boehm T, Wildermuth S (2006) Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Car-diovasc Intervent Radiol 29: 613–23

    Article  Google Scholar 

  13. Moreno R, Rousseau H (2006) Non-linear-transformation-feld to build moving meshes for patient specifc blood fow simulations [proceedings]. In: Wesseling P, Oñate E, Périaux J, eds. European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, The Netherlands

    Google Scholar 

  14. Younis H F, Kaazempur-Mofrad MR, Chan RC et al. (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3: 17–32

    Article  PubMed  CAS  Google Scholar 

  15. Stone PH, Coskun AU, Yeghiazarians Y et al. (2003) Prediction of sites of coronary atherosclerosis progression: In vivo profling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol 18: 458–70

    Article  PubMed  Google Scholar 

  16. Darling RC, Messina CR, Brewster DC, Ottinger LW (1977) Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56 (3 Suppl): II161–4

    PubMed  CAS  Google Scholar 

  17. Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40: 1887–902

    Article  PubMed  Google Scholar 

  18. Venkatasubramaniam AK, Fagan MJ, Mehta T et al. (2004) A comparative study of aortic wall stress using fnite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 28: 168–76

    PubMed  CAS  Google Scholar 

  19. Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC (2008) Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg 47: 17–22; discussion

    Article  PubMed  Google Scholar 

  20. Vorp DA, Raghavan ML, Muluk SC et al. (1996) Wall strength and stifness of aneurysmal and nonaneurysmal abdominal aorta. Ann N Y Acad Sci 800: 274–6

    Article  PubMed  CAS  Google Scholar 

  21. Di Martino ES, Bohra A, Vande Geest J P, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43: 570–6; discussion 6

    Article  PubMed  Google Scholar 

  22. Peattie RA, Riehle TJ, Bluth EI (2004) Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng 126: 438–46

    Article  PubMed  Google Scholar 

  23. Fillinger M F, Racusin J, Baker RK et al. (2004) Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: Implications for rupture risk. J Vasc Surg 39: 1243–52

    Article  PubMed  Google Scholar 

  24. Abel DB, Dehdashtian MM, Rodger ST, Smith AC, Smith LJ, Waninger MS (2006) Evolution and future of preclinical testing for endovascular grafts. J Endovasc Ther 13: 649–59

    Article  PubMed  Google Scholar 

  25. Lam SK, Fung GS, Cheng SW, Chow KW (2007) A computational investigation on the efect of biomechanical factors related to stent-graft models in the thoracic aorta. Conf Proc IEEE Eng Med Biol Soc 2007: 943–6

    Google Scholar 

  26. Howell BA, Kim T, Cheer A, Dwyer H, Saloner D, Chuter TA (2007) Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J Endovasc Ther 14: 138–43

    Article  PubMed  Google Scholar 

  27. Figueroa CA, Taylor CA, Chiou AJ, Yeh V, Zarins CK (2009) Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovasc Ther 16: 350–8

    Article  PubMed  Google Scholar 

  28. Markl M, Harloff A, Foll D, Langer M, Hennig J, Frydrychowicz A (2007) Sclerotic aortic valve: flow-sensitive 4-dimensional magnetic resonance imaging reveals 3 distinct flow-pattern changes. Circulation 116: e336–7

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Rousseau, H. et al. (2011). Imagerie des flux aortiques par IRM et mécanique des fuides: applications cliniques sur la pathologie aortique thoracique. In: Imagerie en coupes du coeur et des vaisseaux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0154-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0154-4_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0153-7

  • Online ISBN: 978-2-8178-0154-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation