Interpretation of Bone Mineral Density As It Relates to Bone Health and Fracture Risk

  • Chapter
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

  • 409 Accesses

Abstract

Examinations measuring bone mineral density (BMD) provide essential information about bone health and fracture risk and have made a significant impact on osteoporosis research as well as on patient management. Yet care must be exercised when interpreting the results of these examinations, as pitfalls are common and often overlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 199.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jergas M, Uffmann M, Escher H, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol 1994; 23(3):195–199.

    Article  PubMed  CAS  Google Scholar 

  2. Finsen V, Anda S. Accuracy of visually estimated bone mineralization in routine radiographs of the lower extremity. Skeletal Radiol 1988; 17:270.

    Article  PubMed  CAS  Google Scholar 

  3. Haller J, Andre MP, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part II. Clinical investigation with computed tomography. Invest Radiol 1990; 25:523.

    Article  PubMed  CAS  Google Scholar 

  4. Haller J, Andre MP, Resnick D, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part I: Investigation in cadavers. Invest Radiol 1990; 25:517.

    Article  PubMed  CAS  Google Scholar 

  5. Genant HK, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 1996; 11(6):707–730.

    Article  PubMed  CAS  Google Scholar 

  6. Lilley J, Walters BG, Heath DA, Drolc Z. In vivo and in vitro precision for bone density measured by dual-energy X-ray absorption. Osteopor Int 1991; 1(3):141–146.

    Article  CAS  Google Scholar 

  7. Lang TF, Li J, Harris ST, Genant HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 1999; 23(1):130–137.

    Article  PubMed  CAS  Google Scholar 

  8. Braillon PM. Quantitative computed tomography precision and accuracy for long-term followup of bone mineral density measurements: a five year in vitro assessment. J Clin Densitom 2002; 5(3):259–266.

    Article  PubMed  Google Scholar 

  9. Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nuclear Med 1997; 27(3):210–228.

    Article  CAS  Google Scholar 

  10. Nevill AM, Holder RL, Maffulli N, et al. Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective. J Bone Miner Res 2002; 17(4):703–708.

    Article  PubMed  Google Scholar 

  11. Melton LJ 3rd, Khosla S, Achenbach SJ, O’Connor MK, O’Fallon WM, Riggs BL. Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteopor Int 2000; 11(11):977–983.

    Article  Google Scholar 

  12. Taaffe DR, Cauley JA, Danielson M, et al. Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the Health, Aging, and Body Composition Study. J Bone Miner Res 2001; 16:1343–1352.

    Article  PubMed  CAS  Google Scholar 

  13. Fieldings KT, Backrach LK, Hudes ML, Crawford PB, Wang MC. Ethnic differences in bone mass of young women vary with method of assessment. J Clin Densitom 2002; 5(3):229–238.

    Article  Google Scholar 

  14. Reid IR, Evans MC, Ames RW. Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women. Osteopor Int 1994; 4:362–367.

    Article  CAS  Google Scholar 

  15. Martini G, Valenti R, Giovani S, Nuti R. Age-related changes in body composition of healthy and osteoporotic women. Maturitas 1997; 27:25–33.

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 1998; 147:3–16.

    Article  PubMed  CAS  Google Scholar 

  17. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993; 341:72–75.

    Article  PubMed  CAS  Google Scholar 

  18. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 1998; 63(5):380–384.

    Article  PubMed  CAS  Google Scholar 

  19. Porter RW, Miller CG, Grainger D, et al. Prediction of hip fracture in elderly women: a prospective study. Br Med J 1990; 301(6753):638–641.

    Article  CAS  Google Scholar 

  20. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, et al. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993; 8(10):1227–1233.

    Article  PubMed  Google Scholar 

  21. Black DM, Cummings SR, Genant HK, et al. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 1992; 7(6):633–638.

    Article  PubMed  CAS  Google Scholar 

  22. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 1990; 263(5):665–668.

    Article  PubMed  CAS  Google Scholar 

  23. Hui SL, Slemenda CW, Johnston CC Jr. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989; 111(5):355–361.

    PubMed  CAS  Google Scholar 

  24. Hui SL, Slemenda CW, Johnston CC Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81(6):1804–1809.

    Article  PubMed  CAS  Google Scholar 

  25. Cleghorn D, Polley K, Bellon M, et al. Fracture rates as a function of forearm mineral density in normal postmenopausal women: retrospective and prospective data. Calcif Tissue Int 1991; 49:161–163.

    Article  PubMed  CAS  Google Scholar 

  26. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997; 157(6):629–634.

    Article  PubMed  CAS  Google Scholar 

  27. de Laet CE, Van Hout BA, Burger H, et al. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 1998; 13(10):1587–1593.

    Article  PubMed  Google Scholar 

  28. Duboeuf F, Hans D, Schott AM, et al. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 1997; 12(11):1895–1902.

    Article  PubMed  CAS  Google Scholar 

  29. Garnero P, Dargent-Molina P, Hans D, et al. Do markers of bone resorption add to bone mineral density and ultrasonographic heel measurement for the prediction of hip fracture in elderly women? The EPIDOS Prospective Study. Osteopor Int 1998; 8(6):563–569.

    Article  CAS  Google Scholar 

  30. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS Prospective Study. Lancet 1996; 348(9026):511–514.

    Article  PubMed  CAS  Google Scholar 

  31. Kroger H, Huopio J, Honkanen R, et al. Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 1995; 10(2):302–306.

    Article  PubMed  CAS  Google Scholar 

  32. Mele R, Masci G, Ventura V, et al. Three-year longitudinal study with quantitative ultrasound at the hand phalanx in a female population. Osteopor Int 1997; 7(6):550–557.

    Article  CAS  Google Scholar 

  33. Nevitt MC, Johnell O, Black DM, et al. Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteopor Int 1994; 4(6):325–331.

    Article  CAS  Google Scholar 

  34. Schott AM, Cormier C, Hans D, et al. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteopor Int 1998; 8(3):247–254.

    Article  CAS  Google Scholar 

  35. Stewart A, Torgerson DJ, Reid DM. Prediction of fractures in perimenopausal women: a comparison of dual energy x-ray absorptiometry and broadband ultrasound attenuation. Ann Rheum Dis 1996; 55:140–142.

    Article  PubMed  CAS  Google Scholar 

  36. Vecht-Hart CM, Zwamborn AW, Peeters PH, et al. Prediction of peripheral fracture risk by quantitative microdensitometry. Prevent Med 1997; 26(1):86–91.

    Article  CAS  Google Scholar 

  37. de Laet CE, van Hout BA, Burger H, et al. Bone density and risk of hip fracture in men and women: cross sectional analysis. Br Med J 1997; 315(7102):221–225.

    Article  Google Scholar 

  38. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 1996; 348:1535–1541.

    Article  PubMed  CAS  Google Scholar 

  39. Liberman UA, Weiss SR, Broll J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 1995; 333(22):1437–1443.

    Article  PubMed  CAS  Google Scholar 

  40. Cummings SR, Black DM, Thompson DE. Effect of alendronate reduces on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 1998; 280(24):2077–2082.

    Article  PubMed  CAS  Google Scholar 

  41. Orwoll ES, Oviatt SK, McClung MR, Deftos LJ, Sexton G. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med 1990; 112:29–34.

    PubMed  CAS  Google Scholar 

  42. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 1998; 339:292–299.

    Article  PubMed  CAS  Google Scholar 

  43. Chesnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in post-menopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med 2000; 109(4):267–276.

    Article  PubMed  CAS  Google Scholar 

  44. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997; 337:670–676.

    Article  PubMed  CAS  Google Scholar 

  45. Delmas PD, Bjamason NH, Mitlak BH, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 1997; 337:1641–1647.

    Article  PubMed  CAS  Google Scholar 

  46. Felson DT, Zhang Y, Hannan MT, Kiel DP, Wilson PW, Anderson JJ. The effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med 1993; 329:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  47. Francis RM. The effects of testosterone on osteoporosis in men. Clin Endocrinol 1999; 50:411–414.

    Article  CAS  Google Scholar 

  48. Lufkin EG, Wahner HW, O’Fallon WM, et al. Treatment of postmenopausal osteoporosis with transdernal estrogen. Ann Intern Med 1992; 117:1–9.

    PubMed  CAS  Google Scholar 

  49. McClung MR, Geusens P, Miller PD, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 2001; 344:333–340.

    Article  PubMed  CAS  Google Scholar 

  50. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344(19): 1434–1441.

    Article  PubMed  CAS  Google Scholar 

  51. Hamdy RC, Petak SM, Lenchik L. Which central dual X-ray absorptiometry skeletal sites and regions of interest should be used to determine the diagnosis of osteoporosis? J Clin Densitom 2002; 5(suppl):S11–S18.

    Article  Google Scholar 

  52. Lenchik L, Kiebzak GM, Blunt BA. What is the role of serial bone mineral density measurements in patient management? J Clin Densitom 2002; 5(suppl):S29–S38.

    Article  Google Scholar 

  53. Ott SM, Kilcoyne RF, Chesnut CH 3rd. Longitudinal changes in bone mass after one year as measured by different techniques in patients with osteoporosis. Calcif Tissue Int 1986; 39(3):133–138.

    Article  PubMed  CAS  Google Scholar 

  54. Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM. Quantitative computed tomography for spinal density measurement. Factors affecting precision. Invest Radiol 1985; 20(3):306–310.

    Article  PubMed  CAS  Google Scholar 

  55. Lang T, Augat P, Majumdar S, Ouyang X, Genant HK. Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance. Bone 1998; 22(5 suppl):149S–153S.

    Article  Google Scholar 

  56. Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 2001; 16(4):597–604.

    Article  PubMed  CAS  Google Scholar 

  57. Baroncelli GI, Saggese G. Critical ages and stages of puberty in the accumulation of spinal and femoral bone mass: the validity of bone mass measurements. Horm Res 2000; 54(supp1)1:2–8.

    Article  PubMed  CAS  Google Scholar 

  58. Yu W, Qin M, Xu L, et al. Normal changes in spinal bone mineral density in a Chinese population: assessment by quantitative computed tomography and dual-energy X-ray absorptiometry. Osteopor Int 1999; 9(2):179–187.

    Article  CAS  Google Scholar 

  59. Carr JJ, Shi R, Lenchik L, Langefeld C, Lange L, Bowden DW. Validation of quantitative cornputed tomography for measurement of bone mineral density in the thoracic spine during cardiac gated protocol for coronary vascular calcium. Radiology 2001; 221:380.

    Article  Google Scholar 

  60. Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 1997; 12(8):1280–1288.

    Article  PubMed  CAS  Google Scholar 

  61. Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 2002; 17(12):2222–2230.

    Article  PubMed  Google Scholar 

  62. Pluskiewicz W, Halaba Z. First prospective report with the use of quantitative ultrasound (QUS) in children and adolescents. J Clin Densitom 2001; 4(2):173.

    Article  PubMed  CAS  Google Scholar 

  63. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ. Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteopor Int 2000; 11(11):967–976.

    Article  Google Scholar 

  64. Falk B, Sadres E, Constantini N, Eliakim A, Zigel L, Foldes AJ. Quantitative ultrasound (QUS) of the tibia: a sensitive tool for the detection of bone changes in growing boys. J Pediatr Endocrinol Metab 2000; 13(8): 1129–1135.

    Article  PubMed  CAS  Google Scholar 

  65. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 1996; 312:1254–1259.

    Article  CAS  Google Scholar 

  66. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977; 59(7):954–962.

    PubMed  CAS  Google Scholar 

  67. Gibson U. The mechanical behaviour of cancellous bone. J Biomech 1985; 18(5):317–328.

    Article  PubMed  CAS  Google Scholar 

  68. Hvid I, Jensen NC, Bunger C, Solund K, Djurhuus JC. Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med 1985; 14(2):79–83.

    Article  PubMed  CAS  Google Scholar 

  69. Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthoped Res 1985; 3(4):464–472.

    Article  CAS  Google Scholar 

  70. Linde F, Hvid I, Pongsoipetch B. Energy absorptive properties of human trabecular bone specimens during axial compression. J Orthoped Res 1989; 7(3):432–439.

    Article  CAS  Google Scholar 

  71. Moro M, Hecker AT, Bouxsein ML, Myers ER. Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 1995; 56(3):206–209.

    Article  PubMed  CAS  Google Scholar 

  72. Cheng XG, Nicholson PH, Boonen S, et al. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 1997; 12(10):1721–1728.

    Article  PubMed  CAS  Google Scholar 

  73. Eriksson SA, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 1989; 44(4):243–250.

    Article  PubMed  CAS  Google Scholar 

  74. Bates DW, Black DM, Cummings SR. Clinical use of bone densitometry: clinical applications. JAMA 2002; 288(15):1898–1900.

    Article  PubMed  Google Scholar 

  75. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA 2002; 288(15):1889–1897.

    Article  PubMed  Google Scholar 

  76. Lenchik L, Sartoris DJ. Current concepts in osteoporosis. AJR Am J Roentgenol 1997; 168(4):905–911.

    PubMed  CAS  Google Scholar 

  77. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteopor Int 1994; 4(6):368–381.

    Article  CAS  Google Scholar 

  78. Binkley NC, Schmeer P, Wasnich RD, Lenchik L. What are the criteria by which a densitometric diagnosis of osteoporosis can be made in males and non-Caucasians? J Clin Densitom 2002; 5(suppl):S19–S27.

    Article  Google Scholar 

  79. Hui SL, Zhou L, Evans R, et al. Rates of growth and loss of bone mineral in the spine and femoral neck in white females. Osteopor Int 1999; 9(3):200–205.

    Article  CAS  Google Scholar 

  80. Melton U I, Khosla S, Achenbach SJ, et al. Effects of body size and skeletal site on the estimated prevalence of osteoporosis in women and men. Osteopor Int 2000; 11:977–983.

    Article  Google Scholar 

  81. De Laet DH, Van Hout BA, Burger H, Hofman A, Pols HAP. Bone density and risk of hip fracture in men and women: cross sectional analysis. Br Med J 1997; 221–225.

    Google Scholar 

  82. Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D. Diagnosis of osteoporosis and fracture threshold in men. Calcif Tissue Int 2001; 69:218–221.

    Article  PubMed  CAS  Google Scholar 

  83. Orwoll E. Perspective: assessing bone density in men. J Bone Miner Res 2000; 15:1867–1870.

    Article  PubMed  CAS  Google Scholar 

  84. Selby PL, Davies M, Adams JE. Do men and women fracture bones at similar bone densities? Osteopor Int 2000; 11:153–157.

    Article  CAS  Google Scholar 

  85. Kudlacek S, Schneider B, Resch H, Freudenthaler O, Willvonseder R. Gender differences in fracture risk and bone mineral density. Maturitas 2000; 36:173–180.

    Article  PubMed  CAS  Google Scholar 

  86. Cauley JA, Zmuda JM, Palmero L, Stone KL, Black DM, Nevitt MC. Do men and women fracture at the same BMD level. J Bone Miner Res 2000; 15:S144.

    Google Scholar 

  87. Miller PD, Njeh CF, Jankowski LG, Lenchik L. What are the standards by which bone mass measurement at peripheral skeletal sites should be used in the diagnosis of osteoporosis? J Clin Densitom 2002; 5(suppl):S39–SD45.

    Article  Google Scholar 

  88. Faulkner KG, Roberts LA, McClung MR. Discrepancies in normative data between Lunar and Hologic DXA systems. Osteopor Int 1996; 6:432–436.

    Article  CAS  Google Scholar 

  89. Black D. A proposal to establish comparable diagnostic categories for bone densitometry based on hip fracture risk among Caucasian women over age 65 years. J Bone Miner Res 2001; 16:S342.

    Google Scholar 

  90. Faulkner KG, Von Stetten E, Miller PD. Discordance in patient classification using T scores. J Clin Densitom 1999; 2:343–350.

    Article  PubMed  CAS  Google Scholar 

  91. Grampp S, Genant HK, Mathur A, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 1997; 12(5):697–711.

    Article  PubMed  CAS  Google Scholar 

  92. Hodgson SF, Watts NB, Bilezikian JP, et al. American Association of Clinical Endocrinologists 2001 medical guidelines for clinical practice for the prevention and management of postmenopausal osteoporosis. Endocr Pract 2001 July; 7(4):293–312.

    Google Scholar 

  93. Kanis JA, Torgerson D, Cooper C. Comparison of the European and USA practice guidelines for osteoporosis. Trends Endocrinol Metab 2000; 11(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  94. Bonnick SL, Johnston CC Jr, Kleerekoper M, et al. Importance of precision in bone density measurements. J Clin Densitom 2001; 4:105–110.

    Article  PubMed  CAS  Google Scholar 

  95. Lenchik L, Watts NB. Regression to the mean: what does it mean? Using bone density results to monitor treatment of osteoporosis. J Clin Densitom 2001; 4(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  96. Lenchik L, Rochmis P, Sartoris DJ. Optimized interpretation and reporting of dual X-ray absorptiometry (DXA) scans. Am J Roentgenol 1998; 171(6).1509–1520.

    CAS  Google Scholar 

  97. Varney LF, Parker RA, Vincelette A, Greenspan SL. Classification of osteoporosis and osteopenia in postmenopausal women is dependent on site-specific analysis. J Clin Densitom 1999; 3:275–283.

    Article  Google Scholar 

  98. Woodson G. Dual X-ray absorptiometry T score concordance and discordance between the hip and spine measurement sites. J Clin Densitom 2000; 3:319–324.

    Article  PubMed  CAS  Google Scholar 

  99. Yu W, Gluer CC, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 1995; 57:169–174.

    Article  PubMed  CAS  Google Scholar 

  100. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 1992; 50(6):507–510.

    Article  PubMed  CAS  Google Scholar 

  101. Preidler KW, White LS, Tashkin J, et al. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck. Acta Radiol 1997; 38:539–542.

    PubMed  CAS  Google Scholar 

  102. Akesson K, Gardsell P, Sembo I, Johnell O, Obrant KJ. Earlier wrist fracture: a confounding factor in distal forearm bone screening. Osteopor Int 1992; 2(4):201–204.

    Article  CAS  Google Scholar 

  103. Smith JA, Vento JA, Spencer RP, Tendler BE. Aortic calcification contributing to bone densitometry measurement. J Clin Densitom 1999; 2:181–183.

    Article  PubMed  CAS  Google Scholar 

  104. Peel NF, Johnson A, Barrington NA, Smith TW, Eastell R. Impact of anomalous vertebral segmentation on measurements of bone mineral density. J Bone Miner Res 1993; 8(6):719–723.

    Article  PubMed  CAS  Google Scholar 

  105. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RB. Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13) Am J Hum Genet 1997; 60:1326–1332.

    Article  PubMed  CAS  Google Scholar 

  106. Boyden LM, Mao J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346(20):1513–1521.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lenchik, L., Vatti, S., Register, T.C. (2004). Interpretation of Bone Mineral Density As It Relates to Bone Health and Fracture Risk. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation