Biosynthesis, Regulation and Export of Lasso Peptides

  • Chapter
  • First Online:
Lasso Peptides

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

  • 813 Accesses

Abstract

Lasso peptides are ribosomally synthesized and posttranslationally modified peptides (RiPPs) produced by bacteria. As such, they are synthesized as linear precursor peptides, which are further subjected to posttranslational modifications and transformed into the mature form. These 15–24-residue peptides share a unique interlocked topology formed by an N-terminal macrolactam ring where the C-terminal tail is threaded and irreversibly trapped. However, access to such a constrained and entropically disfavoured topology is not possible by chemical means, while bacteria evolve specific enzymes that are capable of transforming a linear precursor into the lasso topology. This chapter describes current knowledge of the maturation mechanism, which includes the characteristics of the maturation enzymes and accessory enzymes, the role of the leader peptides and a proposed reaction model. Moreover, this chapter reviews known mechanisms of the regulation and export of lasso peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkhatib Z, Abts A, Mavaro A, Schmitt L, Smits SH (2012) Lantibiotics: how do producers become self-protected? J Biotechnol 159(3):145–154. doi:10.1016/j.jbiotec.2012.01.032

    Article  PubMed  CAS  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. doi:10.1039/c2np20085f

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aviv M, Giladi H, Schreiber G, Oppenheim AB, Glaser G (1994) Expression of the genes coding for the Escherichia coli integration host factor are controlled by growth phase, rpoS, ppGpp and by autoregulation. Mol Microbiol 14(5):1021–1031.

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–208. doi:10.1093/nar/gkp335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Opin Microbiol 8(2):208–215. doi:10.1016/j.mib.2005.02.016

    Article  PubMed  CAS  Google Scholar 

  • Cheung WL, Pan SJ, Link AJ (2010) Much of the microcin J25 leader peptide is dispensable. J Am Chem Soc 132(8):2514–2515. doi:10.1021/ja910191u

    Article  PubMed  CAS  Google Scholar 

  • Chiuchiolo MJ, Delgado MA, Farias RN, Salomon RA (2001) Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 183(5):1755–1764. doi:10.1128/JB.183.5.1755-1764.2001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clarke DJ, Campopiano DJ (2007) Maturation of McjA precursor peptide into active microcin MccJ25. Org Biomol Chem 5(16):2564–2566

    Article  PubMed  CAS  Google Scholar 

  • Craig NL, Nash HA (1984) E. coli integration host factor binds to specific sites in DNA. Cell 39(3 Pt 2):707–716.

    Article  PubMed  CAS  Google Scholar 

  • Crone WJK, Leeper FJ, Truman AW (2012) Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides. Chem Sci 3(12):3516–3521. doi:10.1039/c2sc21190d

    Article  CAS  Google Scholar 

  • Delgado MA, Vincent PA, Farias RN, Salomon RA (2005) YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 187(10):3465–3470. doi:10.1128/JB.187.10.3465-3470.2005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ducasse R, Li Y, Blond A, Zirah S, Lescop E, Goulard C, Guittet E, Pernodet JL, Rebuffat S (2012a) Sviceucin, a lasso peptide from Streptomyces sviceus: isolation and structure analysis. J Pep Sci 18(Supp. 1):S67–68

    Google Scholar 

  • Ducasse R, Yan K-P, Goulard C, Blond A, Li Y, Lescop E, Guittet E, Rebuffat S, Zirah S (2012b) Sequence determinants governing the topology and biological activity of a lasso peptide, microcin J25. ChemBioChem 13(3):371–380

    Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Zirah S, Goulard C, Peduzzi J, Rebuffat S (2007) Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli. Chem Biol 14(7):793–803

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AL, Zhang S, Dikiy I, Panagiotopoulos AZ, Debenedetti PG, James Link A (2010) An experimental and computational investigation of spontaneous lasso formation in microcin J25. Biophys J 99(9):3056–3065. doi:10.1016/j.bpj.2010.08.073

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez-Escribano JP, Song L, Bibb MJ, Challis GL (2012) Posttranslational [small beta]-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem Sci 3(12):3522–3525. doi:10.1039/c2sc21183a

    Article  CAS  Google Scholar 

  • Hegemann JD, Zimmermann M, **e X, Marahiel MA (2013a) Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135(1):210–222. doi:10.1021/ja308173b

    Google Scholar 

  • Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013b) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers. 100(5):527–542. doi:10.1002/bip.22326

    Google Scholar 

  • Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, **e X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl. 53(8):2230–2234. doi:10.1002/anie.201309267

    Article  PubMed  CAS  Google Scholar 

  • Houssen WE, Wright SH, Kalverda AP, Thompson GS, Kelly SM, Jaspars M (2010) Solution structure of the leader sequence of the patellamide precursor peptide, PatE1–34. Chembiochem 11(13):1867–1873. doi:10.1002/cbic.201000305

    Article  PubMed  CAS  Google Scholar 

  • Huo L, Rachid S, Stadler M, Wenzel SC, Muller R (2012) Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem Biol 19(10):1278–1287. doi:10.1016/j.chembiol.2012.08.013

    Article  PubMed  CAS  Google Scholar 

  • Inokoshi J, Matsuhama M, Miyake M, Ikeda H, Tomoda H (2012) Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Appl Microbiol Biotechnol 95(2):451–460. doi:10.1007/s00253-012-3973-8

    Article  PubMed  CAS  Google Scholar 

  • Knappe TA, Linne U, Robbel L, Marahiel MA (2009) Insights into the biosynthesis and stability of the lasso peptide capistruin. Chem Biol 16(12):1290–1298. doi:10.1016/j.chembiol.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  • Landgraf JR, Wu J, Calvo JM (1996) Effects of nutrition and growth rate on Lrp levels in Escherichia coli. J Bacteriol 178(23):6930–6936

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larsen TM, Boehlein SK, Schuster SM, Richards NG, Thoden JB, Holden HM, Rayment I (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38(49):16146–16157. doi:bi9915768 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Levengood MR, Patton GC, van der Donk WA (2007) The leader peptide is not required for post-translational modification by lacticin 481 synthetase. J Am Chem Soc 129(34):10314–10315. doi:10.1021/ja072967

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Makarova KS, Aravind L, Koonin EV (1999) A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 8(8):1714–1719. doi:10.1110/ps.8.8.1714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci U S A. 109(38)15223–15228.doi:10.1073/pnas.1208978109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maksimov MO, Link AJ (2013) Discovery and characterization of an isopeptidase that linearizes lasso peptides. J Am Chem Soc 135(32):12038–12047. doi:10.1021/ja4054256

    Article  PubMed  CAS  Google Scholar 

  • Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6(1):9–18. doi:10.1038/nchembio.286

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oman TJ, Knerr PJ, Bindman NA, Velasquez JE, van der Donk WA (2012) An engineered lantibiotic synthetase that does not require a leader peptide on its substrate. J Am Chem Soc 134(16):6952–6955. doi:10.1021/ja3017297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pan SJ, Cheung WL, Link AJ (2010) Engineered gene clusters for the production of the antimicrobial peptide microcin J25. Protein Expr Purif 71(2):200–206. doi:10.1016/j.pep.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Link AJ (2011) Sequence diversity in the lasso peptide framework: discovery of functional microcin J25 variants with multiple amino acid substitutions. J Am Chem Soc 133(13):5016–5023. doi:10.1021/ja1109634

    Article  PubMed  CAS  Google Scholar 

  • Pan SJ, Rajniak J, Cheung WL, Link AJ (2012a) Construction of a single polypeptide that matures and exports the lasso peptide microcin J25. Chembiochem 13(3):367–370. doi:10.1002/cbic.201100596

    Google Scholar 

  • Pan SJ, Rajniak J, Maksimov MO, Link AJ (2012b) The role of a conserved threonine residue in the leader peptide of lasso peptide precursors. Chem Commun (Camb) 48(13):1880–1882. doi:10.1039/c2cc17211a

    Google Scholar 

  • Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA (2008) The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry 47(28):7342–7351. doi:10.1021/bi800277d

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pavlova O, Mukhopadhyay J, Sineva E, Ebright RH, Severinov K (2008) Systematic structure-activity analysis of microcin J25. J Biol Chem 283(37):25589–25595.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pomares MF, Vincent PA, Farias RN, Salomon RA (2008) Protective action of ppGpp in microcin J25-sensitive strains. J Bacteriol 190(12):4328–4334. doi:10.1128/JB.00183–08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rex JH, Aronson BD, Somerville RL (1991) The tdh and serA operons of Escherichia coli: mutational analysis of the regulatory elements of leucine-responsive genes. J Bacteriol 173(19):5944–5953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roy RS, Kim S, Baleja JD, Walsh CT (1998) Role of the microcin B17 propeptide in substrate recognition: solution structure and mutational analysis of McbA1–26. Chem Biol 5(4):217–228. doi:S1074-5521(98)90635–4

    Article  PubMed  CAS  Google Scholar 

  • Salomon RA, Farias RN (1994) Influence of iron on microcin 25 production. FEMS Microbiol Lett 121(3):275–279. doi:0378-1097(94)90303-4

    Article  PubMed  CAS  Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2):157–162. doi:S0006-291X(67)80055-X

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS (2007) Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65(6):1380–1394

    Article  PubMed  CAS  Google Scholar 

  • Socias SB, Vincent PA, Salomón RA (2009) The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter. J Bacteriol 191(4):1343–1348. doi:10.1128/JB.01074-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Solbiati JO, Ciaccio M, Farías RN, González-Pastor JE, Moreno F, Salomón RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181(8):2659–2662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toyama H, Chistoserdova L, Lidstrom ME (1997) Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143(Pt 2):595–602

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Ma B, Nussinov R (2009) Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control. Phys Biol 6(1):13001

    Article  Google Scholar 

  • Wecksler SR, Stoll S, Iavarone AT, Imsand EM, Tran H, Britt RD, Klinman JP (2010) Interaction of PqqE and PqqD in the pyrroquinoline quinone (PQQ) biosynthetic pathway radical SAM superfamily. Chem Commun 46:7031–7033

    Google Scholar 

  • Weiz AR, Ishida K, Makower K, Ziemert N, Hertweck C, Dittmann E (2011) Leader peptide and a membrane protein scaffold guide the biosynthesis of the tricyclic peptide microviridin. Chem Biol 18(11):1413–1421. doi:10.1016/j.chembiol.2011.09.011

    Article  PubMed  CAS  Google Scholar 

  • Yan KP, Li Y, Zirah S, Goulard C, Knappe TA, Marahiel MA, Rebuffat S (2012) Dissecting the maturation steps of the lasso peptide microcin J25 in vitro. Chembiochem 13:1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Yang X, van der Donk WA (2013) Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis. Chemistry 19(24):7662–7677. doi:10.1002/chem.201300401

    Article  PubMed  CAS  Google Scholar 

  • Yee VC, Pedersen LC, Le Trong I, Bishop PD, Stenkamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci U S A 91(15):7296–7300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmermann M, Hegemann JD, **e X, Marahiel MA (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20(4):558–569. doi:10.1016/j.chembiol.2013.03.013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Yanyan Li, Séverine Zirah and Sylvie Rebuffat

About this chapter

Cite this chapter

Li, Y., Zirah, S., Rebuffat, S. (2015). Biosynthesis, Regulation and Export of Lasso Peptides. In: Lasso Peptides. SpringerBriefs in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1010-6_4

Download citation

Publish with us

Policies and ethics

Navigation