Effective Long-Range order and Phase Transitions in One-Dimensional Systems

  • Chapter
Mathematical Methods in Solid State and Superfluid Theory
  • 349 Accesses

Abstract

IN the literature one finds the statement that phase transitions are impossible in one-dimensional systems.1,2 “Infinities” of the parameters of the system, such as the strength of the interactions or their range, are needed3,4 in order for a phase transition to be possible. This is proved for infinite systems, which are the only ones capable of undergoing phase transitions in the mathematical sense. However, the infinities needed in the parameter values are only logarithmic in the particle number, N, and we shall show that interesting results with reasonable parameter values may still be obtained for macroscopic finite systems in one dimension. Besides the general theoretical interest of the problem, it is relevant to transitions of importance in biophysics.3,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, London, 1958), p. 482.

    MATH  Google Scholar 

  2. L. Van Hove, Physica 16, 137 (1950).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M. E. Baur and L. H. Nosanow, J. Chem. Phys. 37, 153 (1962).

    Article  ADS  Google Scholar 

  4. M. Kac, Phys. Fluids 2, 8 (1959), reviewed by E. Helfand in The Equilibrium Theory of Classical Fluids, Editors H. L. Frisch and J. L. Lebowitz (W. A. Benjamin, New York, 1964).

    Article  ADS  MATH  Google Scholar 

  5. See, for example, B. H. Zimm, J. Chem. Phys. 33, 1349 (1960).

    Article  ADS  Google Scholar 

  6. G. H. Wannier, Elements of Solid State Theory (Cambridge University Press, 1959).

    MATH  Google Scholar 

  7. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. C. Andrews and J. M. Benson, Phys. Letters 20, 16 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  9. F. C. Andrews, Phys. Letters 20, 17 (1966).

    Article  ADS  Google Scholar 

  10. R. Englman, Trans. Faraday Soc. 57, 236 (1961).

    Article  Google Scholar 

  11. N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. C. Clark G. H. Derrick

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer Science+Business Media New York

About this chapter

Cite this chapter

Imry, Y. (1968). Effective Long-Range order and Phase Transitions in One-Dimensional Systems. In: Clark, R.C., Derrick, G.H. (eds) Mathematical Methods in Solid State and Superfluid Theory. Mathematical Methods in Solid State and Superfluid Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6435-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6435-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-6214-0

  • Online ISBN: 978-1-4899-6435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation