Modeling of Optical Gain Due to Excitonic Transitions in Index-Guided ZnCdSe/ZnMgSSe Multiple Quantum Well Blue-Green Lasers

  • Chapter
Guided-Wave Optoelectronics
  • 394 Accesses

Abstract

Optical gain coefficient involving excitonic transitions are calculated for index-guided ZnCdSe/ZnMgSSe multiple quantum well (MQW) layers as a function of operating wavelength. Comparison of threshold current density among unstrained, compressively strained and tensile strained cases are presented. The calculations include strain induced changes in energy band gaps and band offsets. The tensile strained Zn.8Cd .2SeZn.2Mg.8S.03Se.97 quantum well lasers, grown on lattice matched InP substrates, are predicted to operate at threshold current density as low as 175 A/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Julian S. Osinski, Piotr Grodzinski, Yao Zou, and P. Daniel Dapkus, “Threshold Current Analysis of compressive strain (0–1.8%) in low-threshold, long wavelength quantum well lasers” IEEE J. of Quantum Electronics. Vol. 29, 1993. pp 1576–1585.

    Article  ADS  Google Scholar 

  2. E. Yablonovitch and E. O. Kane,“Reduction of lasing threshold current density by the lowering of valence band effective mass, ”J. of Lightwave Tech. Vol. LT-4, May 1986, pp. 504–506.

    Google Scholar 

  3. W. Huang, F. Jain, C. Chung, and G. Drake, “Optical modulations using quantum confined Stark effect in ZnCdSe-ZnSSe structure,” in Proc. Connecticut Microelectronic and Optoelectronic Symp., SNET, New Haven, CT, March 1819, 1993.

    Google Scholar 

  4. S.Y. Wang, Y. Kawakami, J. Simpon, H. Stewart, K.A. Prior, and B.C. Cavenett, “ZnSe-ZnCdSe quantum confined Stark effect modulators,” Appl. Phys. Lett. Vol. 62, 12 April 1993, pp. 1715–1717.

    Article  ADS  Google Scholar 

  5. J. Ding, H. Jeon, T. Ishihara, M. Hagerott and A. V. Nurmikko, “Excitonic gain and laser emission in ZnSe-based quantum wells,” Phys. Rew. Lett. Vol. 69, Sep. 1992, pp 1707–1710.

    Article  ADS  Google Scholar 

  6. C.T. Walker, J.M. Depuydt and M.A. Haase, “Blue-green II-VI laser diodes,” Physica B. Condensed matter, Vol. 185, Apr. 1993, p. 27.

    Article  ADS  Google Scholar 

  7. Walter A. Harrison, “Electronic Structure and the Properties of Solids,” W.H. Freeman and company, San Francisco. (1980)

    Google Scholar 

  8. Fred H. Pollak, “Modulation sectroscopy under uniaxial stress”, Surface Science, Vol. 37 (1973), pp. 863–895.

    Article  ADS  Google Scholar 

  9. Y. Kan, H. Nagai, M. Yamanishi, and I. Suemune, “Field effect on the refractive index and absorption coefficient in A1GaAs quantum well structures and their feasibility for electrooptic device applications,” IEEE J. Quantum Electronics, Vol. QE-23, Dec. 1987 pp. 2167–2180.

    Google Scholar 

  10. S.K. Cheung, “High contrast Fabry-Perot multiple quantum well modulators systems,” Ph.D thesis, University of Connecticut, 1994.

    Google Scholar 

  11. M. Asada, A. kameyama and Y. Suematsu, “Gain and Intervalence band absorption in quantum-well lasers,” IEEE J. Quantum Electronics, Vol. QE-20, July 1984, pp. 745–753.

    Google Scholar 

  12. M. Yamanishi and Y. Lee, “Phase dam** of optical dipole moments and gain spectra in semiconductor lasers,” IEEE J. Quantum Electronics, Vol. 23, Apr. 1987, pp. 367–370.

    Article  ADS  Google Scholar 

  13. D. A. B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood and C.A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structure,” Phys. Rev. B. Vol. 32. July 1985, pp. 10431060.

    Google Scholar 

  14. Peter K. Cheo, “Fiber Optics and Optoelectronics,” Prentice Hall, New Jersey. (1990)

    Google Scholar 

  15. H. C. Casey and M.B. Panish,“Heterostructure lasers,” Academic Press, INC, New York. (1978)

    Google Scholar 

  16. W. Huang and F. C. Jain, “Prediction of lower current threshold in tensile strained ZnCdSe/ZnMgSSe multiple quamtum well blue-green lasers,” in Proc. of LEOS ‘84 7th annual meeting, Oct 31-Nov. 3, Boston, Massachusetts.

    Google Scholar 

  17. J. Ding, M. Hagerott, P. Kelkar, and A.V. Nurmikko, D. C. Grillo, Li He, J. Han, R.L. Gunshor, “Gain and dynamics in ZnSe-based quantum wells, ” J. of Crystal Growth 138 (1994), pp. 719–726.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, W., Jain, F.C. (1995). Modeling of Optical Gain Due to Excitonic Transitions in Index-Guided ZnCdSe/ZnMgSSe Multiple Quantum Well Blue-Green Lasers. In: Tamir, T., Griffel, G., Bertoni, H.L. (eds) Guided-Wave Optoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1039-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1039-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1041-7

  • Online ISBN: 978-1-4899-1039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation