Excimers in Molecular Crystals: The Relaxation of a Nonlinear Oscillator

  • Chapter
Davydov’s Soliton Revisited

Part of the book series: NATO ASI Series ((NSSB,volume 243))

Abstract

Excimer physics is intimately related to nonlinear physics in general. We describe below a simple classical model which two of the present authors developed several years ago. When extended, as we have done recently, the model has the capability of treating both the normal excimer state, and the so-called Y-state of α-perylene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Th. Foerster and K. Kasper, Z. Physik. Chem. N.F. 1, 275 (1954).

    Article  Google Scholar 

  2. Th. Foerster, Angew. Chem. Internat. Edit. 8, 333 (1969).

    Article  Google Scholar 

  3. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), Chapter 7.

    Google Scholar 

  4. J. B. Birks and L. G. Christophorou, Proc. Roy. Soc. A 277, 571 (1964).

    Article  ADS  Google Scholar 

  5. J. Ferguson, J. Chem. Phys. 28, 765 (1958).

    Article  ADS  Google Scholar 

  6. B. Stevens and E. Hutton, Nature 186, 1045 (1960).

    Article  ADS  Google Scholar 

  7. J. B. Birks and A. A. Kazzaz, Proc. Roy. Soc. A 304, 291 (1968).

    Article  ADS  Google Scholar 

  8. W. Kloepffer, H. Bauser, F. Dolezalek, and G. Naundorf, Mol.Cryst. Liq. Cryst. 16, 229 (1972).

    Article  Google Scholar 

  9. Z. Lebovitz, S. Mansour, and A. Weinreb, J. Chem. Phys. 69, 647 (1978).

    Article  ADS  Google Scholar 

  10. U. Mayer, H. Auweter, A. Braun, H. C. Wolf, and D. Schmid, Chem. Phys. 59, 449 (1981).

    Article  Google Scholar 

  11. V. Yakhot, M. D. Cohen, and Z. Ludmer, Advances in Theor. Chem. 13, 489 (1979).

    Google Scholar 

  12. J. Ferguson, J. Chem. Phys. 44, 2677 (1966).

    Article  ADS  Google Scholar 

  13. J. Tanaka, Bull. Chem. Soc. Jpn. 36, 1237 (1963).

    Article  Google Scholar 

  14. R. M. Hochstrasser, Can. J. chem. 39, 451 (1961); J. Chem. Phys.40, 2559 (1964).

    Article  Google Scholar 

  15. E. Von Freydorf, J. Kinder, and M. E. Michel-Beyerle, Chem.Phys. 27, 199 (1978).

    Article  Google Scholar 

  16. H. Auweter, D. Ramer, B. Kunze, and H. C. Wolf, Chem. Phys. Lett. 85, 325 (1982).

    Article  ADS  Google Scholar 

  17. T. Kobayashi, J. Chem. Phys. 69, 3570 (1978).

    Article  ADS  Google Scholar 

  18. A. Matsui and H. Nishimura, J. Phys. Soc. Japan 49, 657 (1980).

    Article  ADS  Google Scholar 

  19. B. Walker, H. Port, and H.C. Wolf, Chem. Phys. 92, 177 (1985).

    Article  Google Scholar 

  20. M. A. Collins, and D. P. Craig, Chem. Phys. 54, 305 (1981).

    Article  ADS  Google Scholar 

  21. D. H. Dunlap and V. M. Kenkre, Chem. Phys. 105, 51 (1986)

    Article  ADS  Google Scholar 

  22. D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 37, 4390 (1988).

    Article  ADS  Google Scholar 

  23. P. M. Morse, Phys. Rev. 34, 57 (1929); R. Rydberg, Z. Physik 73, 376 (1931)

    Article  ADS  MATH  Google Scholar 

  24. C. L. Beckel and P. R. Findley, J. Chem. Phys. 73, 3517 (1980).

    Article  ADS  Google Scholar 

  25. H. Port, R. Seyfang, and H. C. Wolf, J. Phys. Colloq. C7, 391 (1985).

    Google Scholar 

  26. Maatsui and H. Nishimura, J. Phys. Soc. Japan 51, 1711 (1982).

    Article  ADS  Google Scholar 

  27. M.D. Cohen, R. Haberkorn, E. Huler, Z. Ludmer, M. E. Michel-Beyerle, D. Rabinovich, R. Sharon, A. Warshel, V. Yakhot, Chem.Phys. 27, 211 (1978).

    Article  Google Scholar 

  28. V. M. Kenkre and P. Grigolini, University of New Mexico preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kenkre, V.M., Dunlap, D.H., Grigolini, P. (1990). Excimers in Molecular Crystals: The Relaxation of a Nonlinear Oscillator. In: Christiansen, P.L., Scott, A.C. (eds) Davydov’s Soliton Revisited. NATO ASI Series, vol 243. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9948-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9948-4_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9950-7

  • Online ISBN: 978-1-4757-9948-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation