Part of the book series: Applied Optimization ((APOP,volume 22))

  • 678 Accesses

Abstract

The parametric complementarity problem is reformulated as parametric optimization problem. Results on the quantitative stability of the latter are used to obtain such results for the former. In particular, for a new class of functions a result on the local upper Lipschitz-continuity of the solution set map belonging to the parametric complementarity problem is shown. This class of functions extends the class of uniform P-functions so that certain complementarity problems whose solution set is not a singleton can be dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 103.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. De Luca, F. Facchinei, and C. Kanzow: A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical Programming 75 (1996), 407–439.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. L. Dontchev and R. T. Rockafellar: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM Journal on Optimization 6 (1996), 1087–1105.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Facchinei: Structural and stability properties of Po nonlinear complementarity problems. Mathematics of Operations Research,to appear.

    Google Scholar 

  4. F. Facchinei and J. Soares: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM Journal on Optimization 7 (1997), 225–247.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Facchinei, A. Fischer, and C. Kanzow: On the accurate identification of active constraints. SIAM Journal on Optimization,to appear.

    Google Scholar 

  6. A. Fischer: A special Newton-type optimization method. Optimization 24 (1992), 269–284.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Fischer: On the local superlinear convergence of a Newton-type method for LCP under weak conditions. Optimization Methods and Software 6 (1995), 83–107.

    Article  Google Scholar 

  8. C. Geiger and C. Kanzow: On the resolution of monotone complementarity problems. Computational Optimization and Applications 5 (1996), 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. S. Gowda and J.-S. Pang: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Mathematics of Operations Research 19 (1994), 831–879.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. W. Hager and M. S. Gowda: Stability in the presence of degeneracy and error estimation. Technical Report, Department of Mathematics, University of Florida, Gainesville, USA, 1997.

    Google Scholar 

  11. P. T. Harker and B. T. **ao: Newton’s method for the nonlinear complementarity problem: a B-differentiable approach. Mathematical Programming 48 (1990), 339–358.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ioffe: On sensitivity analysis of nonlinear programs in Banach spaces: the approach via composite unconstrained optimization. SIAM Journal on Optimization 4 (1994), 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Kanzow and M. Fukushima: Theoretical and numerical investigation of the D-Gap Function for box constrained variational inequalities. Mathematical Programming, to appear.

    Google Scholar 

  14. D. Klatte: On quantitative stability for non-isolated minima. Control and Cybernetics 23 (1994), 183–200.

    MathSciNet  MATH  Google Scholar 

  15. Z.-Q. Luo and P. Tseng: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM Journal on Optimization 2 (1992), 43–54.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Q. Luo and J.-S. Pang: Error bounds for analytic systems and their applications. Mathematical Programming 67 (1994), 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Mangasarian and M. V. Solodov: Nonlinear complementarity as unconstrained and constrained minimization. Mathematical Programming 62 (1993), 277–297.

    Google Scholar 

  18. R. D. C. Monteiro, J.-S. Pang, and T. Wang: A positive algorithm for the nonlinear complementarity problem. SIAM Journal on Optimization 5 (1995), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. J. Moré: Global methods for nonlinear complementarity problems. Mathematics of Operations Research 21 (1996), 589–614.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.-M. Peng: Equivalence of variational inequality problems to unconstrained minimization. Mathematical Programming 78 (1997), 347–356.

    MathSciNet  MATH  Google Scholar 

  21. G. Ravindran and M. S. Gowda: Regularization of Po-functions in box variational inequality problems. Technical Report TR 97–07, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, USA, 1997.

    Google Scholar 

  22. S. M. Robinson: Some continuity properties of polyhedral multifunctions. Mathematical Programming Study 14 (1981), 206–214.

    Article  MATH  Google Scholar 

  23. S. M. Robinson: Generalized equations and their solutions, part I: Basic theory. Mathematical Programming Study 10 (1979), 128–141.

    Article  MATH  Google Scholar 

  24. P. Tseng: Growth behavior of a class of merit functions for the nonlinear complementarity problem. Journal on Optimization Theory and Applications 89 (1996), 17–37.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer, A. (1998). Merit Functions and Stability for Complementarity Problems. In: Fukushima, M., Qi, L. (eds) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Applied Optimization, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6388-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6388-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4805-2

  • Online ISBN: 978-1-4757-6388-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation