Regularized Newton Methods for Minimization of Convex Quadratic Splines with Singular Hessians

  • Chapter
Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods

Part of the book series: Applied Optimization ((APOP,volume 22))

  • 683 Accesses

Abstract

A quadratic spline function on ℝn is a differentiable piecewise quadratic function. Many convex quadratic programming problems can be reformulated as the problem of unconstrained minimization of convex quadratic splines. Therefore, it is important to investigate efficient algorithms for the unconstrained minimization of a convex quadratic spline. In this paper, for a convex quadratic spline f(x) that has a matrix representation and is bounded below, we show that one can find a global minimizer of f(x) in finitely many iterations even though the global minimizers of f(x) might form an unbounded set. The new idea is to use a regularized Newton direction when a Hessian matrix of f(x) is singular. Applications to quadratic programming are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Berman, N. Kovoor and P. Pardalos, Algorithms for the least distance problem, in Complexity in Numerical Optimization,P. M. Pardalos (ed.), World Scientific, 1993, pp. 33–56

    Google Scholar 

  2. P. Brucker, An 0(n) algorithm for the quadratic knapsack problem, Oper. Res. Letters 3 (1984), 163–166.

    MathSciNet  MATH  Google Scholar 

  3. P. Calamai and J. Moré, Quasi-Newton updates with bounds, SIAM J. Numer. Anal. 24 (1987), 1434–1441.

    Article  MATH  Google Scholar 

  4. B. Chen and M. Pinar, On Newton’s method for Huber’s robust M-estimation problems in linear regression, BIT (to appear).

    Google Scholar 

  5. C. Chui, F. Deutsch, and J. Ward, Constrained best approximation in Hilbert space, Constr. Approx. 6 (1990), 35–64.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Chui, F. Deutsch, and J. Ward, Constrained best approximation in Hilbert space (II), J. Approx. Theory 71 (1992), 213–238.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Clark, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.

    Google Scholar 

  8. D. Clark and M. Osborne, Finite algorithms for Huber’s M-estimator, SIAM J. Stat. Comput. 7 (1986), 72–85.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Deutsch, W. Li, and J. Ward, A dual approach to constrained interpolation from a convex subset of Hilbert space, J. Approx. Theory 90 (1997), 385–414.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Dyer, Linear time algorithms for two-and three-variable linear programs, SIAM Journal of Computing 13 (1984), 31–45.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Dyer, On a multi-dimensional search technique and its application to the Euclidean one-center problem, SIAM J. Comput. 15 (1986), 725–738.

    MathSciNet  MATH  Google Scholar 

  12. H. Ekblom, A new algorithm for the Huber estimator in linear models, BIT 28 (1988), 123–132.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Huber, Robust Statistics, John Wiley, New York, 1981.

    Book  MATH  Google Scholar 

  14. W. Li, Linearly convergent descent methods for unconstrained minimization of convex quadratic splines, J. Optim. Theory Appl. 86 (1995), 145–172.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Li, A conjugate gradient method for unconstrained minimization of strictly convex quadratic splines, Math. Programming 72 (1996), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Li, Numerical algorithms for the Huber M-estimator problem, in Approximation Theory VIII-Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker, eds., World Scientific Publishing Co., Inc., New York, 1995, pp. 325–334.

    Google Scholar 

  17. W. Li, Unconstrained minimization of quadratic splines and applications, in Multivariate Approximation and Splines, G. Nürnberger, J. W. Schmidt, and G. Walz (eds.), Birkhäuser, Basel, 1997, pp. 113–128.

    Chapter  Google Scholar 

  18. W. Li, P. Pardalos and C. G. Han, Gauss-Seidel method for least distance problems, J. Optim. Theory Appl. 75 (1992), 487–500.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Li and J. Swetits, A Newton method for convex regression, data smoothing and quadratic programming with bounded constraints, SIAM J. Optim. 3 (1993), 466–488.

    MathSciNet  MATH  Google Scholar 

  20. W. Li and J. Swetits, A new algorithm for strictly convex quadratic programs, SIAM J. Optim. 7 (1997), 595–619.

    MathSciNet  MATH  Google Scholar 

  21. W. Li and J. Swetits, Linear Pi estimator and Huber M-estimator, SIAM J. Optim. 8 (1998), 457–475.

    MathSciNet  MATH  Google Scholar 

  22. K. Madsen and H. Nielsen, Finite algorithms for robust linear regression, BIT 30 (1990), 682–699.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Madsen and H. Nielsen, A finite smoothing algorithm for linear 11 estimation, SIAM J. Optim. 3 (1993), 223–235.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Madsen, H. Nielsen, and M. Pinar, A new finite continuation algorithm for linear programming, SIAM J. Optim. 6 (1996), 600–616.

    MathSciNet  MATH  Google Scholar 

  25. K. Madsen, H. Nielsen, and M. Pinar, Bounded constrained quadratic programming via piecewise quadratic functions, Preprint, 1997.

    Google Scholar 

  26. N. Megiddo, Linear programming in linear time when the dimension is fixed, J. ACM 31 (1984), 114–127.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Micchelli, P. Smith, J. Swetits, and J. Ward, Constrained Lp approximation, Constr. Approx. 1 (1985), 93–102.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Micchelli and F. Utreras, Smoothing and interpolation in a convex subset of Hilbert space, SIAM J. Sci. Statist. Comput. 9 (1988), 728–746.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Michelot and M. Bougeard, Duality results and proximal solutions of the Huber M-estimator problem, Appl. Math. Optim. 30 (1994), 203–221.

    Article  MathSciNet  MATH  Google Scholar 

  30. J.-S. Pang and L. Qi, A globally convergent Newton method for convex SC1 minimization problems, J. Optim. Theory Appl. 85 (1995), 633–648.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds, Math. Programming 46 (1990), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Shanno and D. Rocke, Numerical methods for robust regression: linear models, SIAM J. Sci. Stat. Comp. 7 (1986), 86–97.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Sun, On piecewise quadratic Newton and trust region problems, Math. Programming, 76 (1997), 451–468.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, W., Swetits, J. (1998). Regularized Newton Methods for Minimization of Convex Quadratic Splines with Singular Hessians. In: Fukushima, M., Qi, L. (eds) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Applied Optimization, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6388-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6388-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4805-2

  • Online ISBN: 978-1-4757-6388-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation