Interaction of Tetrahydropteroylpolyglutamates with Two Folate-Dependent Multifunctional Enzymes

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

Summary

The naturally occurring pteroylpolyglutamate derivatives are substrates for the folate-mediated reactions in cells, including the reactions catalyzed by two multifunctional folate dependent enzymes in eucaryotes. The appropriate derivatives of tetrahydropteroyl (glutamate)n where n = 1, 3, 5, or 7 were used to determine the specificity for, and kinetic advantages of the extra glutamyl residues with two multifunctional proteins from pig liver: methylene-tetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase, and formiminotransferase-formimotetrahydrofolate cyclodeaminase. Specificity for the polyglutamate derivatives ranged from 10-to 70-fold as indicated from Km values or from the ability to inhibit the five different enzyme activities. With the sequential activities of the transferase-deaminase enzyme, it was demonstrated that when the tetrahydropteroyl pentaglutamate is used as a substrate, the intermediate formimino-compound does not accumulate in the medium. That this kinetic observation is due to preferential transfer of the pentaglutamate- but not monoglutamate intermediate from transferase to deaminase sites without its release from the enzyme molecule was supported by three types of experiments. Chemical modification to yield monofunctional derivatives of the transferase-deaminase affected the kinetics of the recombined activities only with the pentaglutamate substrate, causing a lag in the appearance of final product. Inhibition studies demonstrated that the deaminase activity could preferentially be inhibited only with the monoglutamate substrate. The deaminase activity with the monoglutamate substrate was increased by providing elevated formiminotetrahydrofolate in the assay mixture; no effect was observed when the reaction was carried out with pentaglutamate. Preliminary binding studies indicate a single folate site per subunit of the octameric enzyme, suggesting a type of combined transferase-deaminase site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blakely RL (1969) The Biochemistry of Folic Acid and Related Pteridines (Neuberger, A and Tatum EL, eds), American Elsevier, New York.

    Google Scholar 

  2. Baugh CM and Krumdieck CL (1971) Ann. N.Y. Acad. Sci. 186:7–28.

    Article  PubMed  CAS  Google Scholar 

  3. Taylor RT and Hanna ML (1974) Arch. Biochem. Biophys. 181:331–334

    Article  Google Scholar 

  4. Hofftnan RM and Erbe RW (1974) J. Cell Biol. 63:141A.

    Google Scholar 

  5. Scott JM (1976) Biochem. Soc. Trans. 4:845–850.

    PubMed  CAS  Google Scholar 

  6. Reed B, Weir C and Scott JM (1976) Biochem. Soc. Trans. 4:906–907.

    PubMed  CAS  Google Scholar 

  7. Curthoys NP and Rabinowitz JC (1972) J. Biol. Chem. 247:1965–1971.

    PubMed  CAS  Google Scholar 

  8. Kisliuk RL, Gaumont Y and Baugh CM (1974) J. Biol. Chem. 249:4 100–14103.

    Google Scholar 

  9. Coward JK, Chello PH, Cashmore A, Parameswaron KN, De Angelis LM and Bertino JR (1975) Biochemistry 14:1548–1552.

    Article  PubMed  CAS  Google Scholar 

  10. Baggot JE and Krumdieck CL (1979) Biochemistry 18:1036–1041.

    Article  Google Scholar 

  11. Bertino JR, Coward JK, Cashmore A, Chello P, Panichajakul S, Howarth CG and Stout RW (1976) Biochem. Soc. Trans. 4:843–856.

    Google Scholar 

  12. Dolnick BJ and Cheng YC (1978) J. Biol. Chem. 253:3563–3567.

    PubMed  CAS  Google Scholar 

  13. MacKenzie RE and Baugh CM (1980) Biochimica et Biophysica Acta 611:187–195.

    Article  PubMed  CAS  Google Scholar 

  14. Matthews RG and Baugh CM (1980) Biochemistry 19:2040–2045.

    Article  PubMed  CAS  Google Scholar 

  15. Kisliuk RL, Gaumont Y, Lafer E, Baugh CM and Montgomery JA (1981) Biochemistry 20:929–934.

    Article  PubMed  CAS  Google Scholar 

  16. Krumdieck CL, Cornwell PE, Thompson RW and White WE Jr. (1977) Folic Acid, Proc. Workshop, 1975, 25–42.

    Google Scholar 

  17. Caperelli CA, Benkovic PA, Chettur G and Benkovic SJ (1980) J. Biol. Chem. 255:1885–1890.

    PubMed  CAS  Google Scholar 

  18. Smith GK, Mueller WT, Wasserman GF, Taylor WD and Benkovic SJ (1980) Biochemistry 19:4313–4321.

    Article  PubMed  CAS  Google Scholar 

  19. Davis RH (1967) An Organizational Biosynthesis (Vogel HJ, Lampen JO and Bryson V eds.) Academic Press, New York pp. 303–322.

    Book  Google Scholar 

  20. Kirschner K and Bisswanger H (1976) Ann. Rev. Biochem. 45:143–165.

    Article  PubMed  CAS  Google Scholar 

  21. Welch GR (1977) Prog. Biophys. and Mol. Biol. 32:103–191.

    Article  CAS  Google Scholar 

  22. Beaudet R and MacKenzie RE (1976) Biochem. Biophys. Acta 453:151–161.

    Article  PubMed  CAS  Google Scholar 

  23. Drury EJ and MacKenzie RE (1977) Can. J. Biochem. 55:919–923.

    Article  PubMed  CAS  Google Scholar 

  24. MacKenzie RE, Aldridge M and Paquin J (1980) J. Biol. Chem. 255:9474–9478.

    PubMed  CAS  Google Scholar 

  25. MacKenzie RE (1973) Biochem. Biophys. Res. Commun. 53:1088–1095.

    Article  PubMed  CAS  Google Scholar 

  26. Paukert JL, D’Ari-Straus L and Rabinowitz JC (1976) J. Biol. Chem. 251:5104–5111.

    PubMed  CAS  Google Scholar 

  27. Tan LUL, Drury EJ and MacKenzie RE (1977) J. Biol. Chem. 252:1117–1122.

    PubMed  CAS  Google Scholar 

  28. Cohen L and MacKenzie RE (1978) Biochem. Biophys. Acta 522:311–317.

    Article  PubMed  CAS  Google Scholar 

  29. Krumdieck CL and Baugh CM (1969) Biochemistry 8:1568–1572.

    Article  PubMed  CAS  Google Scholar 

  30. Drury EJ, Bazar LS and MacKenzie RE (1975) Arch. Biochem. Biophys. 169:662–668.

    Article  PubMed  CAS  Google Scholar 

  31. MacKenzie RE (1980) Methods in Enzymology 66:626–630.

    Article  PubMed  CAS  Google Scholar 

  32. MacKenzie RE and Tan LUL (1980) Methods in Enzymology 66:609–626.

    Article  PubMed  CAS  Google Scholar 

  33. Blakely RL (1957) Biochan. J. 65:331–322.

    Google Scholar 

  34. Blakely, RL (1960) Nature 188:231–232.

    Article  Google Scholar 

  35. Paulus H (1969) Biochemistry 32:91 – 100.

    CAS  Google Scholar 

  36. Cantley LC and Hammes GG (1973) Biochemistry 12:4900–4904.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacKenzie, R.E., Baugh, C.M. (1983). Interaction of Tetrahydropteroylpolyglutamates with Two Folate-Dependent Multifunctional Enzymes. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation