Regulation of Motor Behavior by Dopamine Receptor Subtypes

An Antisense Knockout Approach

  • Chapter
The Dopamine Receptors

Part of the book series: The Receptors ((REC))

  • 297 Accesses

Abstract

The neurotransmitter dopamine mediates various behavioral functions in the central nervous system (CNS). The major dopamine pathway involved in motor function is the nigrostriatal pathway, which originates from the substantia nigra and is the primary source of dopaminergic innervation of the dorsal striatal neurons (1–4). It plays an important role in regulating motor behavior and its deterioration is the major cause for the motor symptoms of Parkinson’s disease (5, 6). The mesolimbic pathway, which originates from neurons of the ventral tegmental area (VTA), innervates the ventral striatum, nucleus accumbens, olfactory tubercle, and parts of the limbic system, and is most probably involved in emotional and motivational aspects of behavior (7, 8). It may well contribute to the etiology of schizophrenia and serve as the substrate for neuroleptic drug actions (9, 10) along with the mesocortical pathway, which also originates in VTA and projects most densely to the prefrontal cortex (11). This terminal area may be involved in certain aspects of learning and memory (12, 13). Dopamine agonists have been used to ameliorate the major symptoms of Parkinson’s disease, whereas dopamine antagonists, the standard therapy for schizophrenia, often produce motor side effects; reminiscent of Parkinson’s disease. Through its action in these different neural pathways in the CNS, dopamine activates a broad range of motor behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dahlstrom, A. and Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 232 (Suppl.), 1–55.

    Google Scholar 

  2. Ferger, B., Kropf, W., and Kuschinsky, K. (1994) Studies on electroencephalogram (EEG) in rats suggest that moderate doses of cocaine or d-amphetamine activate D1 rather than D2 receptors. Psychopharmacology 114, 297–308.

    Article  PubMed  CAS  Google Scholar 

  3. Graybiel, A. M. and Ragadale, C. W. (1983) Biochemical anatomy of the striatum, in Chemical Neuroanatomy ( Emson, P. C., ed.), Raven, New York, pp. 427–504.

    Google Scholar 

  4. Lindvall, O. and Bjorklund, A. (1983) Dopamine and norephinephrine-containing neuron systems: their anatomy in the rat brain, in Chemical Neuroanatomy ( Emson, P. C., ed.), Raven, New York, pp. 229–255.

    Google Scholar 

  5. Hornykiewicz, O. (1966) Dopamine and brain function. Pharmacol. Res. 18, 925–964.

    CAS  Google Scholar 

  6. Marsden, C. D. (1992) Dopamine and basal ganglia in human. Semin. Neurosci. 4, 171–178.

    Article  Google Scholar 

  7. Koob, G. F. (1992) Dopamine, addition and reward. Semin. Neurosci. 4, 139–148.

    Article  Google Scholar 

  8. Koob, G. F. and Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715–723.

    Article  PubMed  CAS  Google Scholar 

  9. Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186.

    Article  PubMed  CAS  Google Scholar 

  10. Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. (1991) Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486.

    PubMed  CAS  Google Scholar 

  11. Bjorklund, A. and Lindvall, O. (1964) Dopamine-containing systems in the CNS, in Classical Transmitters in the CNS. Handbook of Chemical Neuroanatomy ( Bjorklund, A. and Hokfelt, T., eds.), Elsevier, Amsterdam, pp. 55–122.

    Google Scholar 

  12. Beninger, R. J. (1993) Role of D1 and D2 receptors in learning, in D1:D2 Dopamine Receptor Interaction ( Waddington, J., ed.), Academic, London, pp. 115–158.

    Google Scholar 

  13. Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  14. Kebabian, J. W. and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.

    Article  PubMed  CAS  Google Scholar 

  15. Kebabian, J. W., Petzold, G. L., and Greengard, P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. USA 69, 2145–2149.

    Article  PubMed  CAS  Google Scholar 

  16. Stoof, J. C. and Kebabian, J. (1984) Two dopamine receptors: biochemistry, physiology, and pharmacology. Life Sci. 35, 2281–2296.

    Article  PubMed  CAS  Google Scholar 

  17. Creese, I., Burt, D. R., and Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.

    Article  PubMed  CAS  Google Scholar 

  18. Seeman, P., Lee, T., Chau-Wang, M., and Wang, K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719.

    Article  PubMed  CAS  Google Scholar 

  19. Verma, A. and Kulkarni, S. K. (1993) On the D1 and D2 dopamine receptor participation in learning and memory in mice. Methods Exp. Clin. Pharmacol. 15, 597–607.

    CAS  Google Scholar 

  20. Waddington, J. (ed.) (1993) D1:D2 dopamine receptor interaction. Academic, London.

    Google Scholar 

  21. Civelli, O., Bunzow, J. R., and Grandy, D. K. (1993) Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32, 281–307.

    Article  Google Scholar 

  22. Sibley, D. R. and Monsma, F. J. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. 131, 61–69.

    Article  Google Scholar 

  23. Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Chisre, M., Machida, C. A., Neve, K. A., and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336, 783–787.

    Article  PubMed  CAS  Google Scholar 

  24. Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L., and Schwartz, J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151.

    Article  PubMed  CAS  Google Scholar 

  25. Van Tol, H. H. M., Bunzow, J. R., Guan, H.-C., Sunahara, R. K., Seeman, P., Niznik, H. B., and Civelli, O. (1991) Cloning of a human dopamine D4 receptor gene with high affinity for the antipsychotic clozapine. Nature 350, 614–619.

    Google Scholar 

  26. Grandy, D. K., Zhang, Y., Bouvier, C., Zhou, Q.-Y., Johnson, R. A., Allen, L., Buck, K., Bunzow, J. R., Salon, J., Civelli, O. (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc. Natl. Acad. Sci. USA 89, 9175–9179.

    Google Scholar 

  27. Zhou, Q.-Y., Grandy, D. K., Thambi, L., Kushner, J. A., Van Tol, H. H. M., Cone, R., Pribnow, D., Salon, J., Bunzow, J. R., and Civelli, O. (1991) Cloning and expression of human and rat Di dopamine receptors. Nature 347, 76–80.

    Article  Google Scholar 

  28. Silvia, C. P., King, G. R., Lee, T. H., Xue, Z.-Y., Caron, M. G., and Ellinwood, E. H. (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol. Pharmacol. 46, 51–57.

    PubMed  CAS  Google Scholar 

  29. Zhang, M. and Creese, I. (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates. Neurosci. Lett. 161, 223–226.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang, M., Tarazi, F., and Creese, I. (1994) Antisense knockout of ratCNS dopamine D3 receptors and its behavioral effects. Soc. Neurosci. Abst. 20, 909.

    Google Scholar 

  31. Zhang, S.-P., Zhou, L.-W., and Weiss, B. (1994) Oligodeoxynucleotide antisense to the DI dopamine receptor mRNA inhibits DI dopamine receptor-mediated behaviors in normal mice and in mice lesioned with 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 271, 1462–1470.

    PubMed  CAS  Google Scholar 

  32. Zamecnik, P. C. (1996) History of antisense oligonucleotides, in Methods in Molecular Medicine: Antisense Therapeutics ( Agrawal, S., ed.), Humana Press, Totowa, NJ, pp. 1–11.

    Google Scholar 

  33. Chiasson, B. J., Hooper, M. L., Murphy, P. R., and Robertson, H. A. (1992) Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain. Eur. J. Pharmacol. 227, 451–453.

    Article  PubMed  CAS  Google Scholar 

  34. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993) Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263.

    Article  PubMed  CAS  Google Scholar 

  35. Wahlestedt, C., Pich, M., Koob, G. F., Yee, F., and Heilig, M. (1993) Modulation of anxiety and neuropeptide Y—Y1 receptors by antisense oligodeoxynucleotides. Science 259, 528–531.

    Article  PubMed  CAS  Google Scholar 

  36. Hoagland, M. B., Zamecnik, P. C., and Stephenson, M. L. (1959) A hypothesis concerning the roles of particulate and soluble ribonucleic acids in protein synthesis, in A Symposium on Molecular Biology, University of Chicago Press, Chicago, pp. 105–114.

    Google Scholar 

  37. Cohen, J. (1991) Oligonucleotides as therapeutic agents. Pharmac. Ther. 52, 211–225.

    Article  CAS  Google Scholar 

  38. Loke, S. L., Stein, C. A., Zhang, X. H., Mori, K., Nakanishi, M., Subasinghe, C., Cohen, J. S, and Neckers, L. M. (1989) Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA 86, 3474–3478.

    Article  PubMed  CAS  Google Scholar 

  39. Yakubov, L. A., Deeva, E. A., Zarytova, V. F., Ivanova, E. M., Ryrte, S., Yurchenk, L. V., and Vlassov, V. V. (1989) Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. Natl. Acad. Sci. USA 86, 6454–6458.

    Article  PubMed  CAS  Google Scholar 

  40. Agrawal, S., Temsamani, J., and Tang, J. Y. (1991) Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA 88, 7595–7599.

    Article  PubMed  CAS  Google Scholar 

  41. Campbell, J. M., Bacon, T. A., and Wickstrom, E. (1990) Oligo-deoxynucleotide phosphorothioate stability in subcellular extracts, culture media, sera and cerbrospinal fluid. J. Biochem. Biophys. Methods 20, 259–269.

    Article  PubMed  CAS  Google Scholar 

  42. Whitesell, L., Geselowitz, D., Chavany, C., Fahmy, B., Walbridge, S., Alger, J. R., and Neckers, L. M. (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc. Natl. Acad. Sci. USA 90, 4665–4669.

    Article  PubMed  CAS  Google Scholar 

  43. Norman, A. B., Battaglia, G., and Creese, I. (1987) Differential recovery rates of rat D2 dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: a key to receptor regulatory mechanisms. J. Neurosci. 7, 1484–1491.

    Google Scholar 

  44. Hamblin, M. and Creese, I. (1983) Behavioral and radioligand binding evidence for irreversible dopamine receptor blockade by EEDQ. Life Sci. 32, 2247–2255.

    Google Scholar 

  45. Meller, E., Bordi, F., and Bohmaker, K. (1989) Behavioral recovery after irreversible inactivation of D-1 and D-2 dopamine receptors. Life Sci. 44, 1019–1026.

    Article  PubMed  CAS  Google Scholar 

  46. Neve, K. A., Loeschen, S., and Marshall, J. F. (1985) Denervation accelerates the reappearance ofneostriatal D-2 receptors after irreversible receptor blockade. Brain Res. 329, 225–231.

    Article  PubMed  CAS  Google Scholar 

  47. Saller, C. F., Kreamer, L. D., Adamovage, L. A., and Salama, A. I. (1989) Dopamine receptor occupancy in vivo: measurement using N-ethoxycarbonyl-2ethoxy1,2-dihydroquinoline (EEDQ). Life Sci. 45, 917–929.

    Article  PubMed  CAS  Google Scholar 

  48. Yaswen, P., Stampfer, M., and Ghosh, K. (1992) Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res. Dev. 3, 67–77.

    Google Scholar 

  49. Weiner, D. M., Levey, A. I., and Brann, M. R. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. USA 87, 7050–7054.

    Article  PubMed  CAS  Google Scholar 

  50. Worms, P., Broekkamp, C. L. E., and Lloyd, K. G. (1983) Behavioral effects of neuroleptics, in Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives ( Coyle, J. T. and Enna, S. J., eds.), Raven, New York, 93–118.

    Google Scholar 

  51. Creese, I. and Iversen, S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Psychopharmacologium 39, 345–357.

    Article  Google Scholar 

  52. Kelly, P. H., Seviour, P. W., and Iversen, S. D. (1975) Amphetamine and apomophine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 94, 507–522.

    Article  PubMed  CAS  Google Scholar 

  53. Kelley, A. E., Lang, C. G., and Gauthier, A. M. (1988) Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology 95, 556–559.

    Article  PubMed  CAS  Google Scholar 

  54. Seiden, L. S., Sabol, K. E., and Ricaurte, G. T. (1993) Amphetamine: effects on catecholamine systems and behavior. Annu. Rev. Pharmacol. Toxicol. 32, 639–677.

    Article  Google Scholar 

  55. Robbins, T. W. and Everitt, B. J. (1982) Functional studies of the central catecholamines. Int. Rev. Neurobiol. 23, 303–365.

    Article  PubMed  CAS  Google Scholar 

  56. Amalric, M., Ouagazzal, A., Baunez, C., and Nieoullon, A. (1994) Functional interaction between glutamate and dopamine in the rat striatum. Neurochem. Int. 25, 123–131.

    Article  PubMed  CAS  Google Scholar 

  57. Ouagazzal, A., Nieoullon, A., and Amalric, M. (1994) Locomotor activation induced by MK-801 in the rat: postsynaptic interaction with dopamine receptors in the ventral striatum. Eur. J. Pharmacol. 251, 229–236.

    Article  PubMed  CAS  Google Scholar 

  58. Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M. (1975) Inhibition of D-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacology 41, 87–95.

    Article  CAS  Google Scholar 

  59. Amalric, M., Koob, G., Ouagazzal, A., and Nieoullon, A. (1991) Low doses of SCH 23390 differentially modulate behaviors mediated by mesolimbic or nigrostriatal dopaminergic activation, in the rat. Eleventh European Winter Conference (EWBCR), Crans-Mantana, Switzerland.

    Google Scholar 

  60. Ouagazzal, A., Nieoullon, A., and Amalric, M. (1993) Effects of dopamine D1 and D2 receptor blockade on MK-801-induced hyperlocomotion in rats. Psychopharmacology 111, 427–434.

    Article  PubMed  CAS  Google Scholar 

  61. Morelli, M. and Di Chiara, G. (1985) Catalepsy induced by SCH 23390 in rats. Eur. J. Pharmacol. 117, 179–185.

    Article  PubMed  CAS  Google Scholar 

  62. Cabib, S., Castellano, C., Cestari, V., Filibeck, U., and Puglisi-Allegrs, S. (1991) D1 and D2 receptor antagonists differently affect cocaine-induced locomotor hyperactivity in the mouse. Psychopharmacology 105, 335–339.

    Article  PubMed  CAS  Google Scholar 

  63. Jackson, D. M., Johansson, C., Lindgren, L.-M., and Bengtsson, A. (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol. Biochem. Behay. 48, 465–471.

    Article  CAS  Google Scholar 

  64. Amalric, M. and Koob, G. (1993) Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain Res. 99, 209–226.

    Article  PubMed  CAS  Google Scholar 

  65. Xu, M., Hu, X.-T., Cooper, D. C., Moratalla, R., and Graybiel, A. M. (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine DI receptor mutant mice. Cell 79, 945–955.

    Article  PubMed  CAS  Google Scholar 

  66. Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S. (1994) Dopamine DI receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.

    Google Scholar 

  67. Clark, D. and White, J. F. (1987) Review: D1 dopamine receptor—the search for a function: a critical evaluation of the Dl/D2 dopamine receptor classification and its functional implications. Synapse 1, 347–388.

    Article  PubMed  CAS  Google Scholar 

  68. Phillips, G. D., Howes, S. R., Whitelaw, R. B., Robbins, T. W., and Everitt, B. J. (1995) Analysis of the effects of intra-accumbens SKF-38393 and LY-171555 upon the behavioural satiety sequence. Psychopharmacology 117, 82–90.

    Article  PubMed  CAS  Google Scholar 

  69. Weiss, B., Zhou, L.-W., Zhang, S.-P., and Qin, Z.-H. (1993) Antisense oligodeoxynucleotide inhibits D2 dopamine receptor-mediated behavior and D2 messenger RNA. Neuroscience 55, 607–612.

    Article  PubMed  CAS  Google Scholar 

  70. Zhou, L.-W., Zhang, S.-P., Qin, Z.-H., and Weiss, B. (1994) In vivo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J. Pharmacol. Exp. Ther. 268, 1015–1023.

    CAS  Google Scholar 

  71. Iversen, S. D. (1977) Brain dopamine system and behavior, in Handbook of Psychopharmacology (Iversen, L. L., Iversen, S. D., and Snyder, S. H., eds.), Plenum, New York, pp. 334–384.

    Google Scholar 

  72. Joyce, E. M., Stinus, L., and Iversen, S. D. (1983) Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity. Neuropharmacology 22, 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  73. Taghzouti, K., Louilot, A., Herman, J. P., Le Moat, M., and Simon, H. (1985) Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behay. Neural Biol. 44, 354–363.

    Google Scholar 

  74. Hoffman, D. C. and Beninger, R. J. (1985) The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacol. Biochem. Behay. 22, 341, 342.

    Google Scholar 

  75. Boss, R., Cools, A. R., and Ogren, S. (1988) Differential effects of the selective D2-antagonist raclopride in the nucleus accumbens of the rat on spontaneous and d-amphetamine-induced activity. Psychopharmacology 95, 447–451.

    Article  PubMed  Google Scholar 

  76. Plaznik, A., Stefanski, R., and Kostowski, W. (1989) Interaction between accumbens D1 and D2 receptors regulating rat locomotor activity. Psychopharmacology 99, 558–562.

    Article  PubMed  CAS  Google Scholar 

  77. Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., Ooi, G. T., Grinberg, A., Lee, E. J., Huang, S. P., Bartlett, P. F., Jose, P. A., Sibley, D. R., and Westphal, H. (1994) Altered striatal function in a mutant mouse lacking DIA dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12, 568.

    Google Scholar 

  78. Stahle, L. (1992) Do autoreceptors mediate dopamine agonist-induced yawning and suppression of exploration? A critical review. Psychopharmacology 106, 1–13.

    Article  PubMed  CAS  Google Scholar 

  79. Svensson, K., Carlsson, A., Huff, R. M., Kling-Petersen, T., and Waters, N. (1994) Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. Eur. J. Pharmacol. 263, 235–243.

    Article  PubMed  CAS  Google Scholar 

  80. Svensson, K., Carlsson, A., and Waters, N. (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J. Neural Transm. 95, 71–74.

    Google Scholar 

  81. Ahlenius, S. and Salmi, P. (1994) Behavioral and biochemical effects of dopamine D3 receptor-selective ligand, 7-OH-DPAT, in normal and reserpined-treated rat. Eur. J. Pharmacol. 260, 177–181.

    Article  PubMed  CAS  Google Scholar 

  82. Liu, J.-C., Cox, R. F., Greif, G. J., Freedman, J. E., and Waszczak, B. L. (1994) The putative dopamine D3 receptor agonist 7-OH-DPAT: lack of mesolimbic selectivity. Eur. J. Pharmacol. 264, 269–278.

    Article  PubMed  CAS  Google Scholar 

  83. Waters, N., Lofberg, L., Haadsma-Svensson, S. R., Svensson, K., Sonesson, C, and Carlsson, A. (1994) Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J. Neural. Transm. 98, 39–55.

    Article  CAS  Google Scholar 

  84. Waters, N., Svensson, K., Haadsma-Svensson, S. R., Smith, M. W., and Carlsson, A. (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J. Neural Transm. 94, 11–19.

    Article  CAS  Google Scholar 

  85. Hillegaart, V. and Ahlenius, S. (1987) Effect of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacol. Toxicol. 60, 350–354.

    Article  PubMed  CAS  Google Scholar 

  86. Mogenson, G. J. and Yang, C. R. (1991) The contribution of basal forebrain to limbic-motor integration and the mediation ofmotivation to action. Adv. Exp. Med. Biol. 295, 267–290.

    Article  PubMed  CAS  Google Scholar 

  87. Fletcher, G. H. and Starr, M. S. (1988) Intracerebral SCH 23390 and catalepsy in the rat. Eur. J. Pharmacol. 149, 175.

    Article  PubMed  CAS  Google Scholar 

  88. Meller, E., Kuga, S., Fiedhoff, A. J., and Golstein, M. (1985) Selective D2 dopamine receptor agonists prevent catalepsy induced by SCH 23390, a selective Dl antagonist. Life Sci. 36, 1857–1864.

    Article  PubMed  CAS  Google Scholar 

  89. Ossowska, K., Karcz, M., Wardas, J., and Wolfarth, S. (1990) Striatal and nucleus accumbens D 1 /D2 dopamine receptors in neuroleptic catalepsy. Eur. J. Pharmacol. 182, 327–334.

    Article  PubMed  CAS  Google Scholar 

  90. Miller, R. J. and Hiley, C. R. (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248, 596, 597.

    Google Scholar 

  91. Starke, K., Gothert, I., and Kilbinger, H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.

    PubMed  CAS  Google Scholar 

  92. Burt, D. R., Creese, I., and Snyder, S. H. (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, M., Ouagazzal, AM., Sun, BC., Creese, I. (1997). Regulation of Motor Behavior by Dopamine Receptor Subtypes. In: Neve, K.A., Neve, R.L. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2635-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2635-0_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2637-4

  • Online ISBN: 978-1-4757-2635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation