Electron Beam Source Molecular Beam Epitaxy of AlxGal−xAs Graded Band Gap Device Structures

  • Chapter
Band Structure Engineering in Semiconductor Microstructures

Part of the book series: NATO ASI Series ((NSSB,volume 189))

  • 243 Accesses

Abstract

A new method has been developed for the growth of graded band-gap AlxGal−xAs alloys by molecular beam epitaxy which is based upon electron. beam evaporation of the Group III elements. The metal evaporation rates are measured real-time and feedback controlled using beam flux sensors. The system is computer controlled which allows precise programming of the Ga and Al evaporation rates. The large dynamic response of the metal sources enables for the first time the synthesis of variable band-gap Al Gal−xAs with arbitrary composition profiles. This new technique has been demonstrated in the growth of unipolar hot electron transistors, graded base bipolar transistors, and Mshaped barrier superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Capasso, Ann. Rev. Mater. Sci., 16, 263–91 (1986).

    Google Scholar 

  2. J. P. Harbison, L. D. Peterson, J. Leskoff, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).

    Google Scholar 

  3. N. J. Sauer, T. Y. Chang, A. H. Dayem, E. H. Westerwick, J. Vac. Sci. Tech. B, 5, 718 (1987).

    Article  Google Scholar 

  4. K. Alavi, A. Y. Cho, F. Capasso, and J. Allam, J. Vac. Sci. Tech. B, 5, 802 (1987).

    Google Scholar 

  5. J. C. Bean, Proc. Fourth Int. Conf. MBE, U. of York, September 1986 (to be pub. J. Cryst. Growth).

    Google Scholar 

  6. M. B. Panish, H. Temkin, and S. Sumski, J. Vac. Sci. Tech. B, 3, 657 (1985).

    Google Scholar 

  7. S. Shimizu, O. Tsukakoshi, S. Komiya, and Y. Makita, Jap. J. Appl. Phys., 24, 1130–40 (1986).

    Article  ADS  Google Scholar 

  8. R. J. Malik, J. Vac. Sci. Tech. B, 5, 722 (1987).

    Google Scholar 

  9. Inficon Leybold-Ileraeus Co., Syracuse, NY 13057.

    Google Scholar 

  10. J. 11. Weave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. A, 31, 1 (1983).

    Google Scholar 

  11. R. J. Malik and A. F. J. Levi, Appl. Phys. Lett., 52 (1988).

    Google Scholar 

  12. J. R. Hayes and A. F. J. Levi, IEEE J. Quantum Electron., QE-22, 1744 (1986).

    Google Scholar 

  13. M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett., 55, 2200 (1985).

    Article  ADS  Google Scholar 

  14. M. Kawabe, M. Kondo, N. Matsuura, and K. Yamamoto, Jpn. J. Appl. Phys., 22, L64 (1983).

    Article  ADS  Google Scholar 

  15. B. F. Levine, C. G. Bethea, W. T. Tsang, F. Capasso, K. K. Thornber, R. C. Fulton, and D. A. Kleinman, Appl. Phys. Lett., 42, 769 (1983).

    Article  ADS  Google Scholar 

  16. R. J. Malik, F. Capasso, R. A. Stall, R. A. Kiehl, R. W. Ryan, R. Wunder, and C. G. Bethea, Appl. Phys. Lett., 46, 600 (1985).

    Article  ADS  Google Scholar 

  17. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1092 (1987).

    Article  ADS  Google Scholar 

  18. K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett., 50, 1814 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Malik, R.J. et al. (1989). Electron Beam Source Molecular Beam Epitaxy of AlxGal−xAs Graded Band Gap Device Structures. In: Abram, R.A., Jaros, M. (eds) Band Structure Engineering in Semiconductor Microstructures. NATO ASI Series, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0770-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0770-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0772-4

  • Online ISBN: 978-1-4757-0770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation