Rate Controlled Sintering of Explosively Shock-Conditioned Alumina Powders

  • Chapter
Emergent Process Methods for High-Technology Ceramics

Part of the book series: Materials Science Research ((MSR,volume 17))

Abstract

Fine, high purity alumina powders subjected to nominal plane strain shock conditioning in precompacted disc form by an explosively driven flyer plate were reconstituted as well-compacted specimens (DO = 0.65) and sintered dilatometrically in both CTS and RCS modes (Df = 0.98-0.99+). Effects of variations in precompaction and in shock velocity are characterized and related to sinterability, with emphasis on resultant temperatures at onset of shrinkage, initial stage densification kinetics, overall rate effects and microstruc- tural development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. R. Bergmann and J. Barrington, J. Am. Ceram. Soc., 49, [9], 502 (1966).

    Article  CAS  Google Scholar 

  2. A. C. Greenham and B. P. Richards, Trans. Brit. Ceram. Soc., 69, 115 (1970).

    CAS  Google Scholar 

  3. R. Prummer, Ber. Dtsch. Keram. Ges., 50 [3], 75–81 (1973).

    Google Scholar 

  4. R. Prummer and G. Ziegler, Powder Metall. Inst., 9, [1], 11–14 (1977).

    Google Scholar 

  5. S. Clyens and W. Johnson, Mat. Sci. Eng., 30, 121–29 (1977).

    Article  CAS  Google Scholar 

  6. Dynamic Compaction of Metal and Ceramic Powders, National Materials Advisory Committee Study Report NMAB-394, National Research Council, October 1982.

    Google Scholar 

  7. H. Palmour III and D. R. Johnson, pp. 770–91 in Sintering and Related Phenomena, edited by G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, Gordon and Breach, NY, 1967.

    Google Scholar 

  8. M. L. Huckabee and H. Palmour III, am. Ceram. Soc. Bull., 49, [8], 574–76 (1972).

    Google Scholar 

  9. H. Palmour III and M. L. Huckabee, U.S. Patent 3,900,542, December 1, 1975.

    Google Scholar 

  10. H. Palmour III, M. L. Huckabee, and T. M. Hare, pp. 308–19 in Ceramic Microstructures — 76 76, edited by R. M. Fulrath and J. A. Pask, Westview Press, Boulder, CO, 1977.

    Google Scholar 

  11. T. M. Hare and H. Palmour III, pp. 307–20 in Ceramic Processing Before Firing, edited by G. Y. Onoda Jr. and L. L. Hench, John Wiley and Sons, NY, 1978.

    Google Scholar 

  12. H. Palmour III, M. L. Huckabee, and T. M. Hare, pp. 46–56 in Sintering — New Developments, edited by M. M. Ristic, Mat. Sci. Monographs, 4, Elsevier, Amsterdam, 1979.

    Google Scholar 

  13. M. L. Huckabee, T. M. Hare, and H. Palmour III, pp. 205–15 in Proceeding of Crystalline Ceramics, edited by H. Palmour III, R. F. Davis, and T. M. Hare, Mat. Sci. Res., Vol. 11, Plenum Press, NY, 1979.

    Google Scholar 

  14. H. Palmour III and M. L. Huckabee, pp. 278–97 in Factors in Densification and Sintering of Oxide and Non Oxide Ceramics, edited by S. Somiya, Assoc. for Sci. Doc. Info., Tokyo Inst, of Technology, Tokyo, Japan, 1979.

    Google Scholar 

  15. H. Palmour III and K. Y. Kim, Progress Rept. NCSU-82–01, Contract DAAK11–82-C-0040, June 1982.

    Google Scholar 

  16. H. Palmour III, K. Y. Kim, K. L. More, and R. C. Motley, pp. 331–72 in First Quarterly Report, DARPA Dynamic Synthesis and Consolidation Program, edited by C. L. Cline, Lawrence Livermore National Laboratory Report UCID — 19663, August 1982.

    Google Scholar 

  17. V. D. Linse, J. A. Adair, and R. Willis, pp. 1–79, Ibid.

    Google Scholar 

  18. H. Palmour III, T. M. Hare, J. C. Russ, A. D. Batchelor, M. J. Paisley, and L. J. Freed, Final Tech. Rept., Subcontract 6548901, University of California, Lawrence Livermore National Laboratory, September 1982.

    Google Scholar 

  19. A. D. Batchelor, M. J. Paisley, T. M. Hare, and H. Palmour III, this volume.

    Google Scholar 

  20. V. D. Linse (Battelle Columbus Laboratories), personal communication, 1982.

    Google Scholar 

  21. G. L. Moss (U.S. Army, Aberdeen Proving Ground), personal communication, 1982.

    Google Scholar 

  22. D. P. Dandekar (U.S. Army Mechanics and Materials Research Center), personal communication, 1982.

    Google Scholar 

  23. R. A. Graham (Sandia National Laboratory), personal communication, 1982.

    Google Scholar 

  24. G. K. Williamson and W. H. Hall, Acta Met., 1, 22 (1953).

    Article  CAS  Google Scholar 

  25. C. S. Yust and L. A. Harris, pp. 881–94 in Shock Waves and High Strain Rate Phenomena in Metals, edited by M. A. Mayers and L. E. Murr, Plenum Press, NY, 1981.

    Chapter  Google Scholar 

  26. C. L. Hoenig and C. S. Yust, Am. Ceram. Soc. Bull., 60 [11], 1175–76; 1121–24 (1981).

    Google Scholar 

  27. H. Palmour III, R. A. Bradley, and D. R. Johnson, pp. 392–407 in Kinetics of Reactions in Ionic Systems, edited by T. J. Gray and V. D. Frechette, Mat. Sci. Res., Vol. 4, Plenum Press, NY, 1969.

    Google Scholar 

  28. H. Palmour III, D. R. Johnson, C. H. Kim, and C. E. Zimmer, Tech. Rept. 69–5, Contract N00014–68-A-0187, 1969.

    Google Scholar 

  29. E. Beauchamp (Sandia National Laboratory), personal communication, 1982.

    Google Scholar 

  30. D. E. Peterson and F. W. Clinard, Jr., in Proceedings of Annual Meeting, Mat. Res. Soc., Boston, Nov. 1–5, 1982 (in press).

    Google Scholar 

  31. H. Palmour III, T. M. Hare, and M. L. Huckabee, Final Tech. Rept., Contract N00019–73-C-0139, March 1974;

    Google Scholar 

  32. H. Palmour III and T. M. Hare, Final Tech. Rept., Contract N00019–74-C-0265, July 1975.

    Google Scholar 

  33. H. Palmour III, V. D. Linse, and R. M. Spriggs, pp. 611–18 in Sintering — Theory and Practice, edited by D. Kolar, S. Pejovnik, and M. M. Ristic, Elsevier, Amsterdam, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kim, K.Y., Batchelor, A.D., More, K.L., Palmour, H. (1984). Rate Controlled Sintering of Explosively Shock-Conditioned Alumina Powders. In: Davis, R.F., Palmour, H., Porter, R.L. (eds) Emergent Process Methods for High-Technology Ceramics. Materials Science Research, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8205-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8205-8_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8207-2

  • Online ISBN: 978-1-4684-8205-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation