Part of the book series: Nato ASI Series ((NSSB,volume 271))

Abstract

These lectures cover special topics about the interaction of swift electrons with condensed matter. The focus is on inelastic processes via the linear response function of the medium and sum rules that it satisfies. The spin dependence of low-energy electron interactions and exchange scattering in an electron gas, and the low-energy end of electron-hole cascades in metals are discussed. Aspects of the localization of initially unlocalized, coherent excitations are entered into briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.A. Kumaklov and F.F. Komarov, Energy Loss and Ion Ranges in Solids, Gordon and Breach, New York (1981).

    Google Scholar 

  2. Y.H. Ohtsuki, Charged Beam Interactions with Solids, Taylor and Francis, New York (1983).

    Google Scholar 

  3. P. SchattSchneider, Fundamentals of Inelastic Electron Scattering, Springer Verlag, New York (1986).

    Book  Google Scholar 

  4. J. Schou Scanning Microsc.2 (1988) 607.

    Google Scholar 

  5. S. Tougaard, Surface and Interface Analysis, vol.12, Wiley, New York (1988).

    Google Scholar 

  6. P.M. Echenique, F. Flores and R.H. Ritchie, Solid State Phys. 43 (1990) 229.

    Article  Google Scholar 

  7. H. Seiler, in Electron Beam Interactions with Solids, SEM, Inc, Chicago (1984) p.33.

    Google Scholar 

  8. P. Nozieres and D. Pines, II Nuovo Cimento (X) 9 (1958) 470.

    Article  MATH  Google Scholar 

  9. H.A. Bethe, Ann. Physik 5 (1930) 325

    Article  ADS  MATH  Google Scholar 

  10. H.A. Bethe, Z. Physik 76 (1932) 293.

    Article  ADS  MATH  Google Scholar 

  11. G. Placzek, Phys. Rev.86 (1952) 377.

    Article  ADS  MATH  Google Scholar 

  12. U. Fano and J.E. Turner in NAS-NRC Nuclear Science Series, Report 39, Committee on Nuclear Science, Publication 1133 (1964) p.49.

    Google Scholar 

  13. R.H. Ritchie, R.N. Hamm, J.E. Turner and H.A. Wright, Proc. 6th Symp. Microdos., EUR6064 DE-EN-FR (1978) p.345.

    Google Scholar 

  14. K.S. Singwi and M.P. Tosi, Solid State Physics 36 (1981) 177.

    Article  Google Scholar 

  15. J. Lindhard, K. Dan. Vidensk. Sei.-Mat.-Fys. Medd. 28 (1954) no.8.

    Google Scholar 

  16. T.D. Schultz, Quantum Field Theory and the Many-body Problem, Gordon and Breach, New York (1964).

    Google Scholar 

  17. A.L. Fetter and J.O. Walecka, Quantum Theory of Many-Particle Systems, McGraw Hill, New York (1971).

    Google Scholar 

  18. G.D. Mahan,Many-Particle Physics, Plenum Press, New York (1984).

    Google Scholar 

  19. R.H. Ritchie, Phys. Rev. 106 (1957) 874.

    Article  MathSciNet  ADS  Google Scholar 

  20. R.H. Ritchie, Phys. Rev. 114 (1959) 644.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. L. Hedin and S. Lundqvist, Solid State Phys. 23 (1969) 1.

    Article  Google Scholar 

  22. V. Heine and I.V. Abarenkov, Phil. Mag. 9 (1964) 451.

    Article  ADS  Google Scholar 

  23. J. Hubbard, Proc. Roy Soc. Lond. A240 539

    Google Scholar 

  24. J. Hubbard, ibidem A243 (1957) 336.

    MathSciNet  Google Scholar 

  25. L. Kleinman, Phys. Rev. 160 (1967) 585.

    Article  ADS  Google Scholar 

  26. L. Kleinman, Phys. Rev. 172 (1968) 383.

    Article  ADS  Google Scholar 

  27. L. Kleinman, Phys. Rev. B3 (1971) 2982.

    Google Scholar 

  28. D.C. Langreth, Phys. Rev. 181 (1969) 753.

    Article  ADS  Google Scholar 

  29. S. Yarlagadda and G.F. Giuliani, Solid State Comm. 69 (1989) 677.

    Article  ADS  Google Scholar 

  30. N.D. Mermin, Phys. Rev. B1 (1970) 2362.

    ADS  Google Scholar 

  31. A. Pathak and J. Yussef, Phys. Status Solidi 649 (1973) 431.

    Google Scholar 

  32. C. Moller, Z. Phys. 70 (1931) 786

    Article  ADS  MATH  Google Scholar 

  33. C. Moller, Ann. Phys. 14 (1932) 531.

    Article  MATH  Google Scholar 

  34. W.R. Ferrell, R.H. Ritchie and T.L. Ferrell, Am. J. Phys. 52 (1984) 915.

    Article  MathSciNet  ADS  Google Scholar 

  35. R.H. Ritchie and J.C. Ashley, J. Phys. Chem. Solids 36 (1965) 1689.

    Article  ADS  Google Scholar 

  36. J.J. Quinn, Appl. Phys. Lett. 2 (1963) 167.

    Article  ADS  Google Scholar 

  37. C.A. Kukkonen and A.W. Overhauser, Phys. Rev. B20 (1979) 550.

    ADS  Google Scholar 

  38. N. Iwamoto and D. Pines, Phys. Rev 29 (1984) 3924.

    Article  ADS  Google Scholar 

  39. G. Vignale and K.S. Singwi, Phys. Rev. 32 (1985) 2156.

    Article  ADS  Google Scholar 

  40. D. Penn, Phys. Rev B22 (1980) 2677.

    ADS  Google Scholar 

  41. R.N. Hamm, R.H. Ritchie and J.C. Ashley, ORNL-TM-2072 (1968).

    Google Scholar 

  42. H.A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238 (1957) 551.

    MathSciNet  ADS  Google Scholar 

  43. A. Zhang and P. Platzman, Phys. Rev. B37 (1988) 7326.

    ADS  Google Scholar 

  44. S. Luo and D. Joy, Scanning Microsc. 2 (1988) 1901.

    Google Scholar 

  45. R. Bindi, H. Lanteri, P. Rostaing, J. Phys. D13 (1980) 461.

    ADS  Google Scholar 

  46. R.H. Ritchie, J. Appl. Phys. 37 (1966) 2276.

    Article  ADS  Google Scholar 

  47. J.W. Gadzuk and E.W. Plummer, Phys. Rev. Lett. 26 (1971) 92.

    Article  ADS  Google Scholar 

  48. P.J. Donders and M.J.G. Lee, Phys Rev B41 (1990) 1781.

    ADS  Google Scholar 

  49. See R.H. Ritchie, C.J. Tung, V.E. Anderson and J.C. Ashley, Rad. Research 64 (1975) 181 for the original references; R.H. Ritchie and V.E. Anderson, IEEE, NS-18(6) (1971) 141.

    Google Scholar 

  50. T. Koshikawa and R. Shimizu, J.Phys. D27 (1974) 1303.

    ADS  Google Scholar 

  51. See ref.[l], chapter 3, and the references given therein.

    Google Scholar 

  52. O.H. Crawford and C.W. Nestor, Jr., Phys. Rev.A28 (1983) 1260.

    Google Scholar 

  53. D.L. Johnson, Phys. Rev. B9 (1974) 4478.

    ADS  Google Scholar 

  54. A. Gras-Marti and R.H. Ritchie, (to be published).

    Google Scholar 

  55. R.H. Ritchie, to be published.

    Google Scholar 

  56. See, e.g., D. Liljequist, J. Appl. Phys. 57 (1985) 657

    Article  ADS  Google Scholar 

  57. F. Salvat, J.D. Martinez, R. Mayol and J. Parellada, J. Phys. D18 (1985) 299.

    ADS  Google Scholar 

  58. See L.C. Emerson, R.D. Birkhoff, V.E. Anderson and R.H. Ritchie, Phys. Rev. B7 (1973) 1798 and references therein to the Callaway-Tosatti model. A more recent version of this model has been given by Z.H. Levine and S.G. Louie, Phys. Rev. B25 (1982) 6310.

    Google Scholar 

  59. C.J. Tung, J.C. Ashley, R.D. Birkhoff, R.H. Ritchie, L.C. Emerson and V.E. Anderson, Phys. Rev. B16 (1977) 3049.

    ADS  Google Scholar 

  60. J.C. Ashley and V.E. Anderson, J. Electron Spectrosc. Rel. Phenom. 24 (1981) 127.

    Article  Google Scholar 

  61. R.H. Ritchie, R.N. Hamm, J.E. Turner and H.A. Wright, Proc. 6th Symp. Microdos., EUR 6064 DE-EN-FR,(1978) 345.

    Google Scholar 

  62. D. Penn, Phys. Rev. B35 (1987) 482.

    ADS  Google Scholar 

  63. J.C. Ashley, J. Appl. Phys. 63 (1988) 4620.

    Article  ADS  Google Scholar 

  64. J.C. Ashley, C.J. Tung and R.H. Ritchie, Surf. Sci. 81 (1979) 409.

    Article  ADS  Google Scholar 

  65. R.H. Ritchie R H and A. Howie, Phil. Mag. 36 (1977) 463.

    Article  ADS  Google Scholar 

  66. See, e.g., N. Bohr, Kgl. Danske Vid. Sels. Mat.-Fys. Medd. 18 (1948)

    Google Scholar 

  67. E.J. Williams, Rev. Mod. Phys. 17 (1945) 217

    Article  ADS  Google Scholar 

  68. J. Neufeld, Proc. Phys. Soc. London A66 (1953) 489.

    Google Scholar 

  69. U. Fano, in Charged Particle Tracks in Solids and Liquids, Inst, of Phys., Conf. Series No. 8, London, (1970) p.1.

    Google Scholar 

  70. L. Van Hove, Phys. Rev. 95 (1954) 249.

    Article  ADS  MATH  Google Scholar 

  71. D. Pines and P. Nozieres, The Theory of Quantum Liquids, W.A. Benjamin, New York (1966).

    Google Scholar 

  72. N.P. Chang and K. Raman, Phys. Rev. 181 (1969) 2048.

    Article  ADS  Google Scholar 

  73. A.L. Bleloch, A. Howie, R.H. Milne, and M.G. Walls, Ultramicrosc. 29 (1989) 175.

    Article  Google Scholar 

  74. D. Imeson, R.H. Milne, S.D. Berger, and D. McMullan, Ultramicrosc. 17 (1985) 243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ritchie, R.H., Hamm, R.N., Ashley, J.C., Echenique, P.M. (1991). Electron Spectra in Solids. In: Gras-Marti, A., Urbassek, H.M., Arista, N.R., Flores, F. (eds) Interaction of Charged Particles with Solids and Surfaces. Nato ASI Series, vol 271. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8026-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8026-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8028-3

  • Online ISBN: 978-1-4684-8026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation