Desorption Induced by Electronic Transitions: Basic Principles and Mechanisms

  • Chapter
Interaction of Charged Particles with Solids and Surfaces

Part of the book series: Nato ASI Series ((NSSB,volume 271))

Abstract

In DIET, Desorption Induced by Electronic Transitions, neutral and ionized atoms and molecules are ejected from solids by electronic excitations of the surface bonds induced by incident electrons, photons or heavy particles. By focusing in electronic transitions, we exclude from DIET desorption induced by direct momentum transfer (sputtering) or by thermal agitation. The term DIET includes electron stimulated desorption (ESD), photon stimulated desorption (PSD) and various forms of heavy-particle induced desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Proceedings Diet-I, N.H. Tolk, M.M. Traum, J.E. Tully, and T.E. Madey, eds. Springer Verlag, Berlin (1983).

    Google Scholar 

  2. Proceedings DIET-II, W. Brenig and D. Menzel, eds., Springer Verlag, Berlin (1985).

    Google Scholar 

  3. Proceedings DIET-III, R.H. Stulen and M.L. Knotek, eds., Springer, Berlin (1988).

    Google Scholar 

  4. Proceedings DIET-IV, Springer Verlag, in press.

    Google Scholar 

  5. T.E. Madey and J.T. Yates, J. Vac. Sci. Technol. 8 (1979) 525.

    Article  ADS  Google Scholar 

  6. R.E. Johnson and W.L. Brown, Nucl. Instr. Meth. 198 (1982) 103.

    Article  Google Scholar 

  7. M.L. Knotek, Rep. Prog. Phys. 47 (1984) 1499.

    Article  ADS  Google Scholar 

  8. T.A. Tombrello, Nucl. Instr. Meth. B2 (1984) 555.

    ADS  Google Scholar 

  9. T.E. Madey, D.E. Ramaker and R. Stockbauer, Ann. Rev. Phys. Chem. 35 (1984) 215.

    Article  ADS  Google Scholar 

  10. D. Menzel, Nucl. Inst. Meth. B13 (1986) 507.

    ADS  Google Scholar 

  11. T.E. Madey, Science 234 (1986) 316.

    Article  ADS  Google Scholar 

  12. N. Itoh, Nucl. Instr. Meth. B27 (1987) 155.

    ADS  Google Scholar 

  13. J. Schou, Nucl. Instr. Meth. B27 (1987) 188.

    ADS  Google Scholar 

  14. W.L. Brown, Nucl. Instr. Meth. B32 (1988) 1.

    ADS  Google Scholar 

  15. V.N. Ageev, O.P. Burmistrova, and Yu.A. Kuznetsov, Sov. Phys. Usp. 32 (1989) 588.

    Article  ADS  Google Scholar 

  16. P. Avouris and R.E. Walkup, Ann. Rev. Phys. Chem. 40. (1989) 173.

    Article  ADS  Google Scholar 

  17. H.S. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol II, Oxford Univ. Press, London (1969).

    Google Scholar 

  18. Nuclei moving with relative velocities < 105 cm/s, proper of ground-state vibrations, displace < 0.001 Ã… in 0.1 fs; a negligible value, compared to interatomic distances.

    Google Scholar 

  19. T.E. Madey, Surface Sci. 36 (1973) 281.

    Article  ADS  Google Scholar 

  20. W. Brenig, Z. Physik B23 (1976) 361.

    ADS  Google Scholar 

  21. R.A. Baragiola, Radiat. Eff. 61 (1982) 47.

    Article  Google Scholar 

  22. See for instance P.J. van den Hoek and A.W. Kleynss, Comments At. Mol. Phys. 23 (1989) 93.

    Google Scholar 

  23. P. Nordlander and J.C. Tully, Phys. Rev. B (in press).

    Google Scholar 

  24. H.D. Hagstrum, in Inelastic Ion-Surface Collisions, N.H. Tolk, J.C. Tully, W. Heiland, and C. W. White, eds. Academic, NY (1977), p.1.

    Google Scholar 

  25. T.E. Madey, J.T. Yates, D.A. King, and C.J. Uhlaner, J. Chem. Phys. 52 (1970) 5215.

    Article  ADS  Google Scholar 

  26. M.Q. Ding, E.M. Williams, J.P. Adrados and J.L. de Segovia, Surf. Sci. 140 (1984) L264.

    Google Scholar 

  27. M.Q. Ding and E.M. Williams, Surf. Sci. 160 (1985) 189.

    Article  ADS  Google Scholar 

  28. T.R. Hayes and J.F. Evans, Surface Sci. 159 (1985) 466.

    Article  ADS  Google Scholar 

  29. F.P. Netzer and T.E. Madey, J. Chem. Phys. 766 (1982) 710.

    Article  ADS  Google Scholar 

  30. This may not hold for very small metal particles in conditions of large ionization density, cf. A. Howie, Nature 320 (1986). 684.

    Article  ADS  Google Scholar 

  31. I.V, Vorobeva, Ya.E. Geguzin and E.A. Ter-Ovanes’yan, Sov. Phys. Solid State 29 (1987) 1947.

    Google Scholar 

  32. R. Pedrys, D.J. Oostra, and A.E. deVries, in Ref.2, p.190.

    Google Scholar 

  33. D.J. O’Shaughnessy, J.W. Boring, S. Cui, and R.E. Johnson, Phys. Rev. Lett. 61 (1988) 1635.

    Article  ADS  Google Scholar 

  34. H. Sambe, D.E. Ramaker, L. Parenteau, and L. Sanche, Phys. Rev. Lett. 59 (1987) 236.

    Article  ADS  Google Scholar 

  35. P.A. Redhead, Can. J. Phys. 42 (1964) 886.

    Article  ADS  Google Scholar 

  36. D. Menzel and R. Gomer, J. Chem. Phys. 41 (1964) 3311.

    Article  ADS  Google Scholar 

  37. M.L. Knotek and P.J. Feibelman, Phys. Rev. Lett. 40 (1978) 964.

    Article  ADS  Google Scholar 

  38. M.L. Knotek and P.J. Feibelman, Surface Sci. 90 (1979) 78.

    Article  ADS  Google Scholar 

  39. J. Dresner and B. Goldstein, J. Appl. Phys. 47 (1976) 1038.

    Google Scholar 

  40. J.A. Kilner and L. Ilkov, Vacuum 34 (1984) 139.

    Article  Google Scholar 

  41. D.E. Ramaker, J.S. Murday, N.H. Turner, G. Moore, M.G. Lagally and J. Houston, Phys. Rev. B19 (1979) 5375.

    ADS  Google Scholar 

  42. D.E. Ramaker, C.T. White, and J.S. Murday, Phys. Lett. 89A (1982) 211.

    ADS  Google Scholar 

  43. D.E. Ramaker, J. Vac. Sci. Technol. A1 (1983) 1137.

    ADS  Google Scholar 

  44. L. Calliari, M. Dapor, L. Gonzo and F. Marchetti, in ref.[4].

    Google Scholar 

  45. P. Feulner, R. Treichler, and D. Menzel, Phys. Rev. B24 (1981) 7427.

    ADS  Google Scholar 

  46. R. Jaeger, J. Stör, R. Treichler and K. Baberschke, Phys. Rev. Let. 47 (1981) 1300.

    Article  ADS  Google Scholar 

  47. R Jaeger, R. Treichler, and J. Stör, Surf. Sci. 117 (1982)133.

    Article  Google Scholar 

  48. R. Baragiola, T. Madey and A-M. Lanzillotto, in ref.[4].

    Google Scholar 

  49. D.E. Ramaker, J.S. Murday, N.H. Turner, G. Moore, M.G. Lagally, and J. Houston; Phys. Rev. B19 (1979) 5375. The authors state that the actual Si charge is closer to one.

    ADS  Google Scholar 

  50. D.E. Ramaker, T.E. Madey, R.L. Kurtz, and H. Sambe, Phys. Rev. B33 (1988) 2099.

    ADS  Google Scholar 

  51. K.M. Gibbs, W.L. Brown, and R.E. Johnson, Phys. Rev. B38 (1988) 11001.

    ADS  Google Scholar 

  52. C.U.S. Larsson, A.S. Flodström, R. Nyholm, L. Incoccia, and F. Senf, J. Vac. Sci. Technol. A5 (1987) 3321.

    ADS  Google Scholar 

  53. G.G. de Souza, P. Morin and I. Nenner, Phys. Rev. 34 (1986) 4770.

    Article  Google Scholar 

  54. P. Morin and I. Nenner, Phys. Rev. Lett.56 (1986) 1913.

    Article  ADS  Google Scholar 

  55. M. Salmerón, A.M. Baró, and J.M. Rojo, Surf. Sci. 53 (1975) 689.

    Article  ADS  Google Scholar 

  56. J.A.D. Matthew and Y. Komninos, Surf. Sci. 53 (1975) 716.

    Article  ADS  Google Scholar 

  57. T.A. Green and D.R. Jennison, in ref.3, p.185.

    Google Scholar 

  58. T.A. Carlson and M.O. Krause, Phys. Rev. Lett. 14 (1965) 390.

    Article  ADS  Google Scholar 

  59. T.A. Carlson and M.O. Krause, J. Chem. Phys. 56 (1972) 3206.

    Article  ADS  Google Scholar 

  60. T.A. Carlson, in ref.3, p.169.

    Google Scholar 

  61. P. Feulner, D. Menzel, H.J. Kreuzer, and Z.W. Gortel, Phys. Rev. Lett. 53 (1984) 671.

    Article  ADS  Google Scholar 

  62. R.H. Stulen, in ref.2, p.130.

    Google Scholar 

  63. R.A. Baragiola, T.E. Madey, A-M. Lanzillotto, Phys. Rev. B41 (1990) 9541.

    ADS  Google Scholar 

  64. J.I. Gersten and N. Tzoar, Phys. Rev. B16 (1977) 945.

    ADS  Google Scholar 

  65. R.E. Walkup and P. Avouris, Phys. Rev. Lett. 56 (1986) 524.

    Article  ADS  Google Scholar 

  66. R.E. Walkup and R.L. Kurtz, in ref.3, p.160.

    Google Scholar 

  67. A. Friedenberg and Y. Shapira, Surf. Sci. 87 (1970) 581.

    Article  Google Scholar 

  68. T.E. Madey, Science 234 (1986) 316.

    Article  ADS  Google Scholar 

  69. M.D. Alvey and J.T. Yates, Jr., J. Am. Chem. Soc. 110 (1988) 1782.

    Article  Google Scholar 

  70. M.D. Alvey, M.J. Dresser and J.T. Yates, Phys. Rev. Lett. 56 (1986) 367.

    Article  ADS  Google Scholar 

  71. A.L. Johnson, S.A. Joyce, and T.E. Madey, Phys. Rev. Lett. 61 (1988) 2578.

    Article  ADS  Google Scholar 

  72. F.P. Netzer and T.E. Madey, Surface Sci. 119 (1982) 422.

    Article  ADS  Google Scholar 

  73. Z. Miscovic, J. Vukanic, and T.E. Madey, Surface Sci. 169 (1986) 405.

    Article  ADS  Google Scholar 

  74. Z. Miscovic, J. Vukanic, and T.E. Madey, ibid. 141 (1984) 285.

    Google Scholar 

  75. C.Z. Dong, P. Nordlander and T.E. Madey, in ref.[4].

    Google Scholar 

  76. T.E. Madey, M. Polak, A.L. Johnson and M.M. Walczak, in ref.3, p.120.

    Google Scholar 

  77. M.L. Yu, J. Cables, and D.J. Vitkavage, J. Vac. Sci. Technol. A3 (1985) 1316.

    ADS  Google Scholar 

  78. T.E. Madey, S.A. Joyce and C. Benndorf, in Physics and Chemistry of Alkali Metal Adsorption, H.P. Bonzel, A.M. Bradshaw and G. Ertl, eds., Elsevier, NY (1989) p.185.

    Google Scholar 

  79. P. Varga, Comments At. Mol. Phys. 23 (1989) 111.

    Google Scholar 

  80. P.J. Feibelman, Surf. Sci. 102 (1981) L51.

    Article  ADS  Google Scholar 

  81. A.M. Lanzillotto, R.A. Baragiola, and T.E. Madey, to be published.

    Google Scholar 

  82. M.L. Knotek and J.E. Houston, J. Vac. Sci. Technol. 20 (1982) 544.

    Article  ADS  Google Scholar 

  83. P. Avouris, R. Kawai, N.D. Lang, and D.M. Newns, Phys. Rev. Lett. 59 (1987) 2215.

    Article  ADS  Google Scholar 

  84. O. Grizzi, M. Shi, H. Bu, J. Rabalais, and R. Baragiola, Phys. Rev. B41 (1990) 4789.

    ADS  Google Scholar 

  85. M. Barat and W. Lichten, Phys. Rev. A6 (1972) 211.

    ADS  Google Scholar 

  86. P. Williams, in ref.l, p.184.

    Google Scholar 

  87. .A. Mozumder, in Advances’in Radiation Chemistry, Vol I, M. Burton and J.L. Magee, eds., Wiley, NY (1969) 1.

    Google Scholar 

  88. R.L. Fleischer, P.B. Price and R.M. Walker, Nuclear Tracks in Sol ids, Univ. of California Press, Berkeley (1975).

    Google Scholar 

  89. P.K. Haff, Appl. Phys. Lett. 29 (1976) 473.

    Article  ADS  Google Scholar 

  90. B.U.R. Sundqvist, Nucí. Instr. Meth. B48 (1990) 517.

    Article  ADS  Google Scholar 

  91. R. Baragiola, J. Nucl. Mater. 126 (1984) 313.

    Article  ADS  Google Scholar 

  92. H.S. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, Vol IV, Oxford Univ. Press, London (1969).

    Google Scholar 

  93. N. Bohr, Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. 18 (1948) 8.

    Google Scholar 

  94. R.A. Baragiola, Proc. 7th. Int. Conf. Atom. Coll. Solids, Moscow State Univ. (1977) p.106.

    Google Scholar 

  95. J.A. Schulz, P.T. Murray, R. Kamur, H-K. Hu and J.W. Rabalais, in ref.l, p.191.

    Google Scholar 

  96. J. Möller, M. Neumann and W. Heiland, Physica Scripta 76 (1983) 104.

    Article  Google Scholar 

  97. S.T. deZwart, T. Fried, D.O. Boerma, R. Hoekstra, A.G. Drentje, and A.L. Boers, Surf. Sci. 177 (1986) L939.

    Article  Google Scholar 

  98. U. Diebold and P. Varga, in ref.4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Baragiola, R.A., Madey, T.E. (1991). Desorption Induced by Electronic Transitions: Basic Principles and Mechanisms. In: Gras-Marti, A., Urbassek, H.M., Arista, N.R., Flores, F. (eds) Interaction of Charged Particles with Solids and Surfaces. Nato ASI Series, vol 271. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8026-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8026-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8028-3

  • Online ISBN: 978-1-4684-8026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation