Molecular Mechanisms of Insecticide Resistance

  • Chapter
Pesticide Resistance in Arthropods

Abstract

Four decades of intensive use of synthetic organic insecticides to control arthropod pests and disease vectors have led to the selection of insecticide or acaricide resistance in approximately 450 arthropod species (Georghiou 1986). In the most extreme cases, such as the Colorado potato beetle (Leptinotarsa decemlineata) in parts of the eastern United States, populations are resistant to virtually all chemicals available for control (Forgash 1984). The deleterious consequences of pesticide resistance in arthropods include increased levels of environmental contamination and risks of applicator and agricultural worker exposure from higher rates of pesticide application; increases in pest control costs; disruption of ecologically sound pest control strategies; increased incidence of human, animal, and plant diseases in which transmission depends on insect vectors; and, in the most extreme case, the complete destruction of agricultural production systems on a local or regional basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abalis, I. M., M. E. Eldefrawi, and A. T. Eldefrawi. 1985. High-affinity binding of cyclodiene insecticides and y-hexachlorocyclohexane to y-aminobutyric acid receptors of rat brain. Pestic. Biochem. Physiol. 24: 95–102.

    CAS  Google Scholar 

  • Abalis, I. M., M. E. Eldefrawi, and A. T. Eldefrawi. 1986. Effects of insecticides on GABA-induced chloride influx into rat brain microsacs. J. Toxicol. Environ. Health 18: 13–23.

    PubMed  CAS  Google Scholar 

  • Agosin, M. 1985. Role of microsomal oxidations in insecticide degradation, pp. 647–712. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Ann, Y.-J., T. Shono, and J. Fukami. 1986. Inheritance of pyrethroid resistance in a housefly strain from Denmark. J. Pestic. Sci. 11: 591–5%.

    Google Scholar 

  • Ahn, Y.-J., E. Funaki, N. Motoyama, T. Shono, and J. Fukami. 1987. Nerve insensitivity as a mechanism of resistance to pyrethroids in a Japanese colony of house flies. J. Pestic. Sci. 12: 69–75.

    Google Scholar 

  • Beckendorf, S. K., and M. A. Hoy. 1985. Genetic improvement of arthropod natural enemies through selection, hybridization, or genetic engineering techniques, pp. 167–187. In M. A. Hoy and D. C. Herzog (eds.), Biological control in agricultural IPM systems. Academic, Orlando.

    Google Scholar 

  • Beeman, R. W., and B. A. Schmidt. 1982. Biochemical and genetic aspects of malathion-specific resistance in the Indian mealmoth (Lepidoptera: Pyralidae). J. Econ. Entomol. 75: 945–949.

    CAS  Google Scholar 

  • Berge, J. B., C. Mouches, and D. Fournier. 1986. Molecular biology of some insecticide resistant genes suitable to improve resistance in beneficial arthropods. Abstract 3E-14, VIth Int. Cong. Pestic. Chem. Ottawa.

    Google Scholar 

  • Bloomquist, J. R., and T. A. Miller. 1985. A simple bioassay for detecting and characterizing insecticide resistance. Pestic. Sci. 16: 611–614.

    CAS  Google Scholar 

  • Bloomquist, J. R., and T. A. Miller. 1986. Sodium channel neurotoxins as probes of the knockdown resistance mechanism. Neurotoxicology 7: 217–224.

    PubMed  CAS  Google Scholar 

  • Bloomquist, J. R., and D. M. Soderlund. 1985. Neurotoxic insecticides inhibit GABA-dependent chloride uptake into mouse brain vesicles. Biochem. Biophys. Res. Commun. 133: 37–43.

    PubMed  CAS  Google Scholar 

  • Bloomquist, J. R., P. M. Adams, and D. M. Soderlund. 1986. Inhibition of γ-aminobutyric acid-stimulated chloride flux in mouse brain vesicles by polychlorocycloalkane and pyrethroid insecticides. Neurotoxicology 7: 11–20.

    PubMed  CAS  Google Scholar 

  • Bloomquist, J. R., D. M. Soderlund, and D. C. Knipple. 1989. Knockdown resistance to dichlorodiphenyltrichloroethane and pyrethroid insecticides in the nap” mutant of Drosophila melanogaster is correlated with reduced neuronal sensitivity. Arch. Insect Biochem. Physiol. 10: 293–302.

    CAS  Google Scholar 

  • Booth, G. M., D. J. Weber, L. M. Ross, S. D. Burton, W. S. Bradshaw, W. M. Hess, and J. R. Larsen. 1983. Mechanisms of pesticide resistance in non-target organisms, pp. 387–409. In G. P. Georghiou and T. Saito (eds), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Brealey, C. J., P. L. Crampton, P. R. Chadwick, and F. E. Rickett. 1984. Resistance mechanisms to DDT and transpermethrin in Aedes aegypti. Pestic. Sci. 15: 121–132.

    CAS  Google Scholar 

  • Brooks, G. T. 1974. Chlorinated insecticides, Vol. II, Biological and environmental aspects, pp. 3–62. CRC Press, Cleveland.

    Google Scholar 

  • Brown, G. B., J. E. Gaupp, and R. W. Olsen. 1988. Pyrethroid insecticides: stereospecific allosteric interaction with the batrachotoxinin-A benzoate binding site of mammalian voltage-sensitive sodium channels. Mol. Pharmacol. 34: 54–59.

    Google Scholar 

  • Brown, T. M., and W. G. Brogdon. 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Ann. Rev. Entomol. 32: 145–162.

    CAS  Google Scholar 

  • Brown, T. M., and G. T. Payne. 1986. Synergists for permethrin in Heliothis virescens. Abstract 3D-17, Vlth Int. Congr. Pestic. Chem. Ottawa.

    Google Scholar 

  • Burt, P. E., M. Elliott, A. W. Farnham, N. F. Janes, P. H. Needham, and D. A. Pulman. 1974. The Pyrethrins and related compounds. Part XIX, Geometrical and optical isomers of 2,2-dimethyl-3-(2,2-dichlorovinyl)-cyclopropanecarboxylic acid and insecticidal esters with 5-benzyl-3-furyl-methyl and 3-pehnoxybenzyl alcohols. Pestic. Sci. 5: 791–799.

    CAS  Google Scholar 

  • Busvine, J. R. 1951. Mechanism of resistance to insecticide in house flies. Nature 168: 193–195.

    PubMed  CAS  Google Scholar 

  • Capdevila, J., N. Ahmad, and M. Agosin. 1975. Soluble cytochrome P-450 from house fly microsomes. Partial purification and characterization of two hemoprotein forms. J. Biol. Chem. 250: 1048–1060.

    Google Scholar 

  • Catterall, W. A. 1986. Molecular properties of voltage-sensitive sodium channels. Ann. Rev. Biochem. 55: 953–985.

    PubMed  CAS  Google Scholar 

  • Chadwick, P. R., J. F. Invest, and M. J. Bowron. 1977. An example of cross-resistance to pyrethroids in DDT-resistant Aedes aegypti. Pestic. Sci. 8: 618–624.

    Google Scholar 

  • Chadwick, P. R., R. Slatter, and M. J. Bowron. 1984. Cross-resistance to pyrethroids and other insecticides in Aedes aegypti. Pestic. Sci. 15: 112–120.

    CAS  Google Scholar 

  • Chang, C. P., and F. W. Plapp, Jr. 1983a. DDT and pyrethroids: receptor binding and mode of action in the house fly. Pestic. Biochem. Physiol. 20: 76–85.

    CAS  Google Scholar 

  • Chang, C. P., and F. W. Plapp, Jr. 1983b. DDT and pyrethroids: receptor binding in relation to knockdown resistance (kdr) in the house fly. Pestic. Biochem. Physiol. 20: 86–91.

    CAS  Google Scholar 

  • Chang, C. K., and M. E. Whalon. 1986. Hydrolysis of permethrin by pyrethroid esterases from resistant and susceptible strains of Amblyseius fallacis (Acari: Phytoseiidae). Pestic. Biochem. Physiol. 25: 446–452.

    CAS  Google Scholar 

  • Chiang, C., and A. L. Devonshire. 1982. Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrethroid resistance (kdr) in house flies (Musca domestica). Pestic. Sci. 13: 156–160.

    Google Scholar 

  • Clark, A. G., and W. C. Dauterman. 1982. The characterization by affinity chromatography of glutathione S-transferases from different strains of house fly. Pestic. Biochem. Physiol. 17: 307–314.

    CAS  Google Scholar 

  • Clark, A. G., and N. A. Shamaan. 1984. Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase. Pestic. Biochem. Physiol. 22: 249–261.

    CAS  Google Scholar 

  • Clark, A. G., N. A. Shamaan, W. C. Dauterman, and T. Hayaoka. 1984. Characterization of multiple glutathione transferases from the house fly, Musca domestica (L). Pestic. Biochem. Physiol. 22: 51–59.

    CAS  Google Scholar 

  • Clark, A. G., N. A. Shamaan, M. D. Sinclair, and W. C. Dauterman. 1986. Insecticide metabolism by multiple glutathione S-transferases in two strains of the house fly, Musca domestica (L). Pestic. Biochem. Physiol. 25: 169–175.

    CAS  Google Scholar 

  • Cohen, E., and J. E. Casida. 1986. Effects of insecticides and GABAergic agents on a house fly [35S]t-butylbicyclophosphorothionate binding site. Pestic. Biochem. Physiol. 25: 63–72.

    CAS  Google Scholar 

  • Dauterman, W. C. 1983. Role of hydrolases and glutathione S-transferases in insecticide resistance, pp. 229–247. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Dauterman, W. C. 1985. Insect metabolism: extramicrosomal, pp. 713–730. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • de Jersey, J., J. Nolan, P. A. Davey, and P. W. Riddles. 1985. Separation and characterization of the pyrethroid-hydrolyzing esterases of the cattle tick, Boophilus microplus. Pestic. Biochem. Physiol. 23: 349–357.

    Google Scholar 

  • Delorme, R., D. Fournier, J. Chaufaux, A. Cuany, J. M. Bride, D. Auge, and J. B. Berge. 1988. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidae: Lepidoptera). Pestic. Biochem. Physiol. 32: 240–246.

    CAS  Google Scholar 

  • Devonshire, A. L. 1975. Studies of the carboxylesterases of Myzus persicae resistant and susceptible to organophosphorus insecticides. Proc. 8th Brit. Insectic. Fungic. Conf. 1: 67–73.

    CAS  Google Scholar 

  • Devonshire, A. L. 1977. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochem. J. 167: 675–683.

    PubMed  CAS  Google Scholar 

  • Devonshire, A. L. 1987. Biochemical studies of organophosphorus and carbamate resistance in house flies and aphids, pp. 239–255. In M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. Sawicki (eds.), Combatting resistance to xenobiotics: biological and chemical approaches. Ellis Horwood, Chichester.

    Google Scholar 

  • Devonshire, A. L., and G. D. Moores. 1982. A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate, and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18: 235–246.

    CAS  Google Scholar 

  • Devonshire, A. L., and G. D. Moores. 1984a. Characterization of insecticide-insensitive acetylcholinesterase: microcomputer-based analysis of enzyme inhibition in homogenates of individual house fly (Musca domestica) heads. Pestic. Biochem. Physiol. 21: 341–348.

    CAS  Google Scholar 

  • Devonshire, A. L., and G. D. Moores. 1984b. Different forms of insensitive acetylcholinesterase in insecticide-resistant house flies (Musca domestica). Pestic. Biochem. Physiol. 21: 336–340.

    CAS  Google Scholar 

  • Devonshire, A. L., and R. Sawicki. 1979. Insecticide-resistant Myzus persicae as an example of evolution by gene duplication. Nature 280: 140–141.

    Google Scholar 

  • Devonshire, A. L., G. D. Moores, and C. Chiang. 1983. The biochemistry of insecticide resistance in the peach-potato aphid, Myzus persicae, pp. 191–1%. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.

    Google Scholar 

  • De Vries, D. H., and G. P. Georghiou. 1981a. Absence of enhanced detoxication of permethrin in pyrethroid-resistant house flies. Pestic. Biochem. Physiol. 15: 242–252.

    Google Scholar 

  • De Vries, D. H., and G. P. Georghiou. 1981b. Decreased nerve sensitivity and decreased cuticular penetration as mechanisms of resistance to pyrethroids in a (lR)-trans-permethrin-selected strain of the house fly. Pestic. Biochem. Physiol. 15: 234–241.

    Google Scholar 

  • Dowd, P. F., C. C. Gagne, and T. C. Sparks. 1987. Enhanced pyrethroid hydrolysis in pyrethroid-resistant larvae of the tobacco budworm, Heliothis virescens (F.). Pestic. Biochem. Physiol. 28:9–16.

    CAS  Google Scholar 

  • Farnham, A. W. 1977. Genetics of resistance of house flies (Musca domestica L.) to pyrethroids. I. Knockdown resistance. Pestic. Sci. 8: 631–636.

    Google Scholar 

  • Farnham, A. W., A. W. A. Murray, R. M. Sawicki, I. Denholm, and J. C. White. 1987. Characterization of the structure-activity relationship of kdr and two variants of super-Mr to pyrethroids in the house fly (Musca domestica L.). Pestic. Sci. 19: 209–220.

    CAS  Google Scholar 

  • Feyereisen, R., J. F. Koener, D. E. Farnsworth, and D. W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytrochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc. Natl. Acad. Sci. USA 86: 1465–1469.

    PubMed  CAS  Google Scholar 

  • Field, L. M., A. L. Devonshire, and B. G. Forde. 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251: 309–312.

    PubMed  CAS  Google Scholar 

  • Fisher, C. W., and R. T. Mayer. 1984. Partial purification and characterization of phenobarbital-induced house fly cytochrome P-450. Arch. Insect Biochem. Physiol. 1: 127–138.

    CAS  Google Scholar 

  • Forgash, A. J. 1984. History, evolution, and consequences of insecticide resistance. Pestic. Biochem. Physiol. 22: 178–186.

    CAS  Google Scholar 

  • Fournier, D., J.-M. Bride, C. Mouches, M. Raymond, M. Magnin, J.-B. Berge, N. Pasteur, and G. P. Georghiou. 1987. Biochemical characterization of the esterases A1 and B1 associated with organophosphate resistance in the Culex pipiens L. complex. Pestic. Biochem. Physiol. 27: 211–217.

    CAS  Google Scholar 

  • Gammon, D. W. 1980. Pyrethroid resistance in a strain of Spodoptera littoralis is correlated with decreased sensitivity of the CNS in vitro. Pestic. Biochem. Physiol. 13: 53–62.

    CAS  Google Scholar 

  • Gant, D. B., M. E. Eldefrawi, and A. T. Eldefrawi. 1987. Cyclodiene insecticides inhibit GABAA receptor-regulated chloride transport. Toxicol. Appl. Pharmacol. 88: 313–321.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P. 1986. The magnitude of the resistance problem, pp. 14–43. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.

    Google Scholar 

  • Georghiou, G. P., and N. Pasteur. 1978. Electrophoretic esterase patterns in insecticide-resistant and susceptible mosquitoes. J. Econ. Entomol. 71: 201–205.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., and N. Pasteur. 1980. Organophosphate resistance and esterase pattern in a natural population of the southern house mosquito from California. J. Econ. Entomol. 73: 489–492.

    CAS  Google Scholar 

  • Georghiou, G. P., N. Pasteur, and M. K. Hawley. 1980. Linkage relationships between organophosphate resistance and a highly active esterase-B in Culex quinquefasciatus from California. J. Econ. Entomol. 73: 301–305.

    PubMed  CAS  Google Scholar 

  • Georghiou, G. P., V. Ariaratnam, M. E. Pasternak, and C. S. Lin. 1985. Organophosphate multiresistance in Culex pipiens quinquefasciatus in California. J. Econ. Entomol. 68: 461–467.

    Google Scholar 

  • Grubs, R. E., P. M. Adams, and D. M. Soderlund. 1988. Binding of [3H]saxitoxin to head membrane preparations from susceptible and knockdown-resistant house flies. Pestic. Biochem. Physiol. 32: 217–223.

    CAS  Google Scholar 

  • Hall, L. M. 1986. Genetic variants of voltage-sensitive sodium channels, pp. 313–324. In C. Y. Kao and S. R. Levinson (eds.), Tetrodotoxin, saxitoxin, and the molecular biology of the sodium channel. New York Academy of Sciences, New York.

    Google Scholar 

  • Hall L. M., and D. P. Kasbekar. 1989. Drosophila sodium channel mutations affect pyrethroid sensitivity, pp. 99–114. In T. Narahashi and J. Chambers (eds.), Insecticide action: from molecule to organism. Plenum, New York.

    Google Scholar 

  • Hall, L. M. C., and P. Spierer. 1986. The Ace locus of Drosophila melanogaster. structural gene for acetylcholinesterase with an unusual 5’ leader. EMBO J. 5: 2949–2954.

    PubMed  CAS  Google Scholar 

  • Halliday, W. R., and G. P. Georghiou. 1985. Inheritance of resistance to permethrin and DDT in the southern house mosquito (Diptera: Culicidae). J. Econ. Entomol. 78: 762–767.

    CAS  Google Scholar 

  • Hama, H. 1983. Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, pp. 299–331. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Hammock, B.D., and D. M. Soderlund. 1986. Chemical strategies for resistance management, pp. 111–129. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.

    Google Scholar 

  • Hayaoka, T., and W. C. Dauterman. 1982. Induction of glutathione S-transferase by phenobarbital and pesticides in various house fly strains and its effect on toxicity. Pestic. Biochem. Physiol. 17: 113–119.

    CAS  Google Scholar 

  • Hayaoka, T., and W. C. Dauterman. 1983. The effect of phénobarbital induction on glutathione conjugation of diazinon in susceptible and resistant house flies. Pestic. Biochem. Physiol. 19:344–349.

    CAS  Google Scholar 

  • Hemingway, J. 1982. The biochemical nature of malathion resistance in Anopheles stephensi from akistan. Pestic. Biochem. Physiol. 17: 149–155.

    CAS  Google Scholar 

  • Hemingway, J. 1983. Biochemical studies on malathion resistance in Anopheles arabiensis from Sudan. Trans. R. Soc. Trop. Med. Hyg. 77: 477–480.

    PubMed  CAS  Google Scholar 

  • Hemingway, J. 1984. The joint action of malathion and IBP against malathion-resistant Anopheles stephensi. Bull. World Health Org. 62: 445–449.

    PubMed  CAS  Google Scholar 

  • Hemingway, J. 1985. Malathion carboxylesterase enzymes in Anopheles arabiensis from Sudan. Pestic. Biochem. Physiol. 23: 309–313.

    CAS  Google Scholar 

  • Hemingway, J., C. Smith, K. G. Jayawardena, and P. R. J. Herath. 1986. Field and laboratory detection of the altered acetylcholinesterase resistance genes which confer organophosphate and carbamate resistance in mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 76: 559–565.

    Google Scholar 

  • Hodgson, E. 1983. The significance of cytochrome P-450 in insects. Insect Biochem. 13: 237–246.

    CAS  Google Scholar 

  • Hodgson, E. 1985. Microsomal mono-oxygenases, pp. 225–321. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 11. Pergamon, Oxford.

    Google Scholar 

  • Hodgson, E., and A. P. Kulkarni. 1983. Characterization of cytochrome P-450 in studies of insecticide resistance, pp. 207–228. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Holden, J. S. 1979. Absorption and metabolism of permethrin and Cypermethrin in the cockroach and the cotton-leafworm larvae. Pestic. Sci. 10: 295–307.

    CAS  Google Scholar 

  • Jackson, F. R., S. D. Wilson, G. R. Strichartz, and L. M. Hall. 1984. Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature 308: 189–191.

    PubMed  CAS  Google Scholar 

  • Kadous, A. A., S. M. Ghiasuddin, F. Matsumura, J. G. Scott, and K. Tanaka. 1983. Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the German cockroach. Pestic. Biochem. Physiol. 19: 157–166.

    CAS  Google Scholar 

  • Kao, L. R., N. Motoyama, and W. C. Dauterman. 1984. Studies on hydrolases in various house fly strains and their role in malathion resistance. Pestic. Biochem. Physiol. 22: 86–92.

    CAS  Google Scholar 

  • Kao, L. R., N. Motoyama, and W. C. Dauterman. 1985. The purification and characterization of esterases from insecticide-resistant and susceptible house flies. Pestic. Biochem. Physiol. 23: 228–239.

    CAS  Google Scholar 

  • Kasbekar, D. P., and L. M. Hall. 1988. A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides. Pestic. Biochem. Physiol. 32: 135–145.

    CAS  Google Scholar 

  • Lawrence, L. J., and J. E. Casida. 1984. Interactions of lindane, toxaphene, and cyclodienes with brain-specific r-butylbicyclophosphorothionate receptor. Life Sci. 35: 171–178.

    PubMed  CAS  Google Scholar 

  • Lester, H. A. 1988. Heterologous expression of excitability proteins: route to more specific drugs? Science 241: 1057–1063.

    PubMed  CAS  Google Scholar 

  • Levitan, E. S., P. R. Schofield, D. R. Burt, L. M. Rhee, S. Wisden, M. Koehler, N. Fujita, H. F. Rodriguez, A. Stephenson, M. G. Darlison, E. A. Barnard, and P. H. Seeburg. 1988. Structural and functional basis for GABAA receptor heterogeneity. Nature 335: 76–79.

    PubMed  CAS  Google Scholar 

  • Lombet, A., C. Mourre, and M. Lazdunski. 1988. Interaction of insecticides of the pyrethroid family with specific binding sites on the voltage-dependent sodium channel from mammalian brain. Brain Res. 459: 44–53.

    PubMed  CAS  Google Scholar 

  • Loughney, K., R. Kreber, and B. Ganetzky. 1989. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell 58: 1143–1154.

    PubMed  CAS  Google Scholar 

  • Maa, W. C. J., and L. C. Terriere. 1983. Age-dependent variation in enzymatic and electrophoretic properties of house fly (hf. domestical carboxylesterases. Comp. Biochem. Physiol. 74C: 461–467.

    CAS  Google Scholar 

  • Malcolm, C. A. 1983a. The genetic basis of pyrethroid and DDT resistance inter-relationships in Aedes aegypti. I. Isolation of DDT and pyrethroid resistance factors. Genetica 60: 213–219.

    CAS  Google Scholar 

  • Malcolm, C. A. 1983b. The genetic basis of pyrethroid and DDT resistance inter-relationships in Aedes aegypti. U. Allelism of R DDT2 and Rw. Genetica 60: 221–229.

    CAS  Google Scholar 

  • Malcolm, C. A., and R. J. Wood. 1982a. The establishment of a laboratory strain of Aedes aegypti homogeneous for high resistance to permethrin. Pestic. Sci. 13: 104–108.

    Google Scholar 

  • Malcolm, C. A., and R. J. Wood. 1982b. Location of a gene conferring resistance to knockdown by permethrin and bioresmethrin in adults of the BKPM3 strain of Aedes aegypti. Genetica 59: 233–237.

    CAS  Google Scholar 

  • Matsumura, F. 1983. Penetration, binding, and target insensitivity as causes of resistance to chlorinated hydrocarbon insecticides, pp. 367–386. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Matsumura, F., and S. M. Ghiasuddin. 1983. Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. J. Environ. Sci. Health B18: 1–14.

    CAS  Google Scholar 

  • Matsumura, F., and G. Voss. 1965. Properties of partially purified malathion carboxylesterase of the two-spotted spider mite. J. Insect Physiol. 11: 147–160.

    PubMed  CAS  Google Scholar 

  • Milani, R. 1954. Comportamento mendeliano della resistenza alla azione abbattante del DDT: correlazione tran abbattimento e mortalita in Musca domestica L. Riv. Parassitol. 15: 513–542.

    Google Scholar 

  • Miller, T. A., J. M. Kennedy, and C. Collins. 1979. CNS insensitivity to pyrethroids in the resistant kdr strain of house flies. Pestic. Biochem. Physiol. 12: 224–230.

    CAS  Google Scholar 

  • Miller, T. A., V. L. Salgado, and S. N. Irving. 1983. The kdr factor in pyrethroid resistance, pp. 353–366. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Miller, L. H., R. K. Sakai, P. Romans, R. W. Gwadz, P. Kantoff, and H. G. Coon. 1987. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambiae. Science 237: 779–781.

    PubMed  CAS  Google Scholar 

  • Moldenke, A. F., D. R. Vincent, D. E. Farnsworth, and L. C. Teeeiere. 1984. Cytochrome P-450 in insects. 4. Reconstitution of cytochrome P-450-dependent monooxygenase activity in the house fly. Pestic. Biochem. Physiol. 21: 358–367.

    CAS  Google Scholar 

  • Motoyama, N., N. Nomura, and W. C. Dauterman. 1980. Multiple factors for organophosphorus resistance in the house fly, Musca domestica L. J. Pestic. Sci. 5: 393–402.

    CAS  Google Scholar 

  • Motoyama, N., A. Hayashi, and W. C. Dauterman. 1983. The presence of two forms of glutathione S-transferases with distinct substrate specificity in OP-resistant and -susceptible house fly strains, pp. 197–202. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.

    Google Scholar 

  • Mouches, C., D. Fournier, M. Raymond, M. Magnin, J.-B. Berge, N. Pasteur, and G. P. Georghiou. 1985. Association entre l’amplification de sequences d’ADN, l’augmentation quantitative d’ester-ases et la resistance a des insecticides organophosphores chez des moustiques du complexe Culex pipiens, avec une note sur une amplification similaire chez Musca domestica L. C. R. Acad. Sci. Ser. III Sci. Vie 301: 695–700.

    CAS  Google Scholar 

  • Mouches, C., M. Magnin, J.-B. Berge, M. de Silvestri, V. Beyssat, N. Pasteur, and G. P. Georghiou. 1987. Overproduction of detoxifying esterases in organophosphate-resistant Culex mosquitoes and their presence in other insects. Proc. Natl. Acad. Sci. USA 84: 2113–2116.

    PubMed  CAS  Google Scholar 

  • Mouches, C., N. Pasteur, J.-B. Berge, O. Hyrien, M. Raymond, B. Robert de St. Vincent, M. de Silvestri, and G. P. Georghiou. 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233: 778–780.

    PubMed  CAS  Google Scholar 

  • Narahashi, T. 1983. Resistance to insecticides due to reduced sensitivity of the nervous system, pp. 333–352. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Nebert, D. W., and F. J. Gonzales. 1987. P-450 genes: structure, evolution, and regulation. Ann. Rev. Biochem. 56: 945–993.

    PubMed  CAS  Google Scholar 

  • Nicholson, R. A., and T. A. Miller. 1985. Multifactorial resistance to transpermethrin in field-collected strains of the tobacco budworm Heliothis virescens F. Pestic. Sci. 16: 561–570.

    CAS  Google Scholar 

  • Nicholson, R. A., R. J. Hart, and P. O. Osborne. 1980a. Mechanisms involved in the development of resistance to pyrethroids with particular reference to knockdown resistance in house flies, pp. 465–471. In Insect neurobiology and pesticide action (Neurotox ’79). Society of Chemical Industry, London.

    Google Scholar 

  • Nicholson, R. A., A. E. Chalmers, R. J. Hart, and R. G. Wilson. 1980b. Pyremroid action and degradation in the cattle tick (Boophilus microplus), pp. 289–295. In Insect neurobiology and pesticide action (Neurotox ’79). Society of Chemical Industry, London.

    Google Scholar 

  • Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ideda, H. Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, K. Kangawa, H. Matsuo, M. A. Raftery, T. Hirose, S. Inayama, H. Hayashida, T. Miyata and S. Numa. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312: 121–127.

    PubMed  CAS  Google Scholar 

  • Noda, M., T. Ikeda, T. Kayano, H. Suzuki, H. Takeshima, M. Kurasaki, H. Takahashi, and S. Numa. 1986a. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320: 188–192.

    PubMed  CAS  Google Scholar 

  • Noda, M., T. Ikeda, H. Suzuki, H. Takeshima, T. Takahashi, M. Kuno, and S. Numa. 1986b. Expression of functional sodium channels from cloned cDNA. Nature 322: 826–828.

    PubMed  CAS  Google Scholar 

  • Nolan, J., W. J. Roulston, and W. H. Wharton. 1977. Resistance to synthetic pyrethroids in a DDT- resistant strain of Boophilus microplus. Pestic. Sci. 8: 484–486.

    CAS  Google Scholar 

  • Orner, S. M., G. P. Georghiou, and S. N. Irving. 1980. DDT/pyrethroid resistance interrelationships in Anopheles stephensi. Mosq. News 40: 200–209.

    Google Scholar 

  • Oppenoorth, F. J. 1982. Two different paraoxon-resistant acetylcholinesterase mutants in the house fly. Pestic. Biochem. Physiol. 18: 26–27.

    CAS  Google Scholar 

  • Oppenoorth, F. J. 1985. Biochemistry and genetics of insecticide resistance, pp. 731–773. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology biochemistry and pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Osborne, M. P., and R. J. Hart. 1979. Neurophysiological studies of the effects of permethrin upon pyrethroid resistant (kdr) and susceptible strains of dipteran larvae. Pestic. Sci. 10: 407–413.

    Google Scholar 

  • Osborne, M. P., and A. Smallcombe. 1983. Site of action of pyrethroid insecticides in neuronal membranes as revealed by the kdr resistance factor, pp. 103–107. In J. Miyamoto and P. C. Kearney (eds.), Pesticide chemistry: human welfare and environment, Vol. 3. Pergamon, Oxford.

    Google Scholar 

  • Ottea, J. A., and F. W. Plapp, Jr. 1981. Induction of glutathione S-aryl transferase by phenobarbital in the house fly. Pestic. Biochem. Physiol. 15: 10–13.

    CAS  Google Scholar 

  • Ottea, J. A., and F. W. Plapp, Jr. 1984. Glutathione S-transferase in the house fly: biochemical and genetic changes associated with induction and insecticide resistance. Pestic. Biochem. Physiol. 22: 203–208.

    CAS  Google Scholar 

  • Ozoe, Y., M. Eto, K. Mochinda, and T. Nakamura. 1986. Characterization of high affinity binding of [3H]propyl bicyclic phosphate to house fly head extracts. Pestic. Biochem. Physiol. 26:263–264.

    CAS  Google Scholar 

  • Pasteur, N., and G. Sinegre. 1975. Esterase polymorphism and sensitivity to Dursban organophosphorus insecticide in Culex pipiens pipiens populations. Biochem. Genet. 13: 789–803.

    PubMed  CAS  Google Scholar 

  • Pasteur, N., A. Iseki, and G. P. Georghiou. 1981a. Genetic and biochemical studies of the highly active esterases A’ and B associated with organophosphate resistance in mosquitoes of the Culex pipiens complex. Biochem. Genet. 19: 909–919.

    PubMed  CAS  Google Scholar 

  • Pasteur, N., G. Sinegre, and A. Gabinaud. 1981b. Est-2 and Est-3 polymorphisms in Culex pipiens L. from southern France in relation to organophosphate resistance. Biochem. Genet. 19:499–508.

    PubMed  CAS  Google Scholar 

  • Pauron, D., J. Barhanin, M. Amichot, M. Pralavorio, J.-B. Berge, and M. Lazdunski. 1989. Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies. Biochemistry 28: 1673–1677.

    CAS  Google Scholar 

  • Payne, G. T., and D. M. Soderlund. 1989. Allosteric enhancement by DDT of the binding of [3H]batrachotoxinin A-20-a-benzoate to sodium channels. Pestic. Biochem. Physiol. 33: 276–282.

    CAS  Google Scholar 

  • Payne, G. T., R. G. Blenk, and T. M. Brown. 1988. Inheritance of permethrin resistance in the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 81: 65–73.

    Google Scholar 

  • Pedersen, L.-E. K. 1986. The potency of cyclopropane pyrethroid ethers against susceptible and resistant strains of the house fly Musca domestica. Experientia 42: 1057–1058.

    CAS  Google Scholar 

  • Picollo de Villar, M. I., L. J. T. van der Pas, H. R. Smissaert, and F. J. Oppenoorth. 1983. An unusual type of malathion-carboxylesterase in a Japanese strain of house fly. Pestic. Biochem. Physiol. 19: 60–65.

    Google Scholar 

  • Plapp, F. W., Jr. 1986. Genetics and biochemistry of insecticide resistance in arthropods: prospects for the future, pp. 74–86. In Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC.

    Google Scholar 

  • Plapp, F. W., Jr., and R. F. Hoyer. 1968. Possible pleiotropism of a gene conferring resistance to DDT, DDT analogs, and Pyrethrins in the house fly and Culex tarsalis. J. Econ. Entomol. 61: 761–765.

    CAS  Google Scholar 

  • Priester, T. M., and G. P. Georghiou. 1978. Induction of high resistance to permethrin in Culex pipiens quinquefasciatus. J. Econ. Entomol. 71: 197–200.

    PubMed  CAS  Google Scholar 

  • Priester, T. M., and G. P. Georghiou. 1980. Cross-resistance spectrum in pyrethroid-resistant Culex quinquefasciatus. Pestic. Sci. 11: 617–624.

    CAS  Google Scholar 

  • Raymond, M., D. Founder, J. Berge, A. Cuany, J.-M. Bride, and N. Pasteur. 1985a. Singlemosquito test to determine genotypes with an acetylcholinesterase insensitive to inhibition to propoxur insecticide. J. Am. Mosq. Control Assoc. 1: 425–427.

    PubMed  CAS  Google Scholar 

  • Raymond, M., D. Pasteur, D. Fournier, A. Cuany, J. Berge, and M. Magnin. 1985b. Le gene d’une acetylcholinesterase insensible au propoxur determine la resistance de Culex pipiens L. a cet insecticide. C.R. Acad. Sci. Ser. HI Sci. Vie 300: 509–512.

    CAS  Google Scholar 

  • Riddles, P. W., P. A. Davey, and J. Nolan. 1983. Carboxylesterases from Boophilus microplus hydrolyze /raw-permethrin. Pestic. Biochem. Physiol. 20: 133–140.

    CAS  Google Scholar 

  • Riskallah, M. R. 1983. Esterases and resistance to synthetic pyrethroids in the Egyptian cotton leafworm. Pestic. Biochem. Physiol. 19: 184–189.

    CAS  Google Scholar 

  • Rossignol, D. P. 1988. Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies. Pestic. Biochem. Physiol. 32: 146–152.

    CAS  Google Scholar 

  • Saito, T., K. Tabata, and S. Kohno. 1983. Mechanisms of acaricide resistance with emphasis on dicofol, pp. 429–444. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Salgado, V. L., S. N. Irving, and T. A. Miller. 1983a. Depolarization of motor nerve terminals by pyrethroids in susceptible and fc/r-resistant house flies. Pestic. Biochem. Physiol. 20: 100–114.

    CAS  Google Scholar 

  • Salgado, V. L., S. N. Irving, and T. A. Miller. 1983b. The importance of nerve terminal depolarization in pyrethroid poisoning in insects. Pestic. Biochem. Physiol. 20: 169.

    CAS  Google Scholar 

  • Salkoff, L., A. Butler, A. Wei, N. Scavarda, K. Giffen, C. Ifune, R. Goodman, and G. Mandel. 1987. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237: 744–749.

    PubMed  CAS  Google Scholar 

  • Sattelle, D. B., C. A. Leech, S. C. R. Lummis, B. J. Harrison, H. P. C. Robinson, G. D. Moores, and A. L. Devonshire. 1988. Ion channel properties of insects susceptible and resistant to insecticides, pp. 563–582. In G. G. Lunt (ed.), Neurotox ’88: Molecular basis of drug and pesticide action. Elsevier, Amsterdam.

    Google Scholar 

  • Sawicki, R. M. 1978. Unusual response of DDT-resistant house flies to carbinol analogues of DDT. Nature 275: 443–444.

    PubMed  CAS  Google Scholar 

  • Sawicki, R. M. 1985. Resistance to pyrethroid insecticides in arthropods, pp. 143–192. In D. H. Hutson and T. R. Roberts (eds.), Progress in pesticide biochemistry and toxicology, Vol. 5, Insecticides. Wiley, New York.

    Google Scholar 

  • Sawicki, R. M., A. L. Devonshire, A. W. Farnham, K. E. O’Dell, G. D. Moores, and I. Denholm. 1984. Factors affecting resistance to insecticides in house flies, Musca domestica L. (Diptera: Muscidae). U. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids. Bull. Entomol. Res. 74: 197–206.

    CAS  Google Scholar 

  • Schnitzerling, H. J., J. Nolan, and S. Hughes. 1983. Toxicology and metabolism of some synthetic pyrethroids in larvae of susceptible and resistant strains of the cattle tick Boophilus microplus (Can.). Pestic. Sci. 14:64–72.

    CAS  Google Scholar 

  • Schofield, P. R., M. G. Darlsion, N. Fujita, D. R. Burt, F. A. Stephenson, H. Rodriguez, L. M. Rhee, J. Ramachandran, V. Reale, T. A. Glencorse, P. H. Seeburg, and E. A. Barnard. 1987. Sequence and functional expression of the GAB AA receptor shows a ligand-gated receptor super-family. Nature 328: 221.

    PubMed  CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1986a. Mechanisms responsible for high levels of permethrin resistance in the house fly. Pestic. Sci. 17: 195–206.

    CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1986b. The biochemical genetics of permethrin resistance in the Learn-PyR strain of house fly. Biochem. Genet. 24: 25–37.

    PubMed  CAS  Google Scholar 

  • Scott, J. G., and G. P. Georghiou. 1986c. Malathion-specific resistance in Anopheles stephensi from Pakistan. J. Am. Mosq. Control Assoc. 2: 29–32.

    PubMed  CAS  Google Scholar 

  • Scott, J. G., and F. Matsumura. 1981. Characteristics of a DDT-induced case of cross-resistance to permethrin in Blattella germanica. Pestic. Biochem. Physiol. 16: 21–27.

    CAS  Google Scholar 

  • Scott, J. G., and F. Matsumura. 1983. Evidence for two types of toxic actions of pyrethroids on susceptible and DDT-resistant German cockroaches. Pestic. Biochem. Physiol. 19: 141–150.

    Google Scholar 

  • Scott, J. G., S. B. Ramaswamy, F. Matsumura, and K. Tanaka. 1986. Effectof method of application on resistance to pyrethroid insecticides in Blattella germanica (Orthoptera: Blattellidae). J. Econ. Entomol. 79: 571–575.

    PubMed  CAS  Google Scholar 

  • Shono, T. 1985. Pyrethroid resistance: importance of the kdr-type mechanism. J. Pestic. Sci. 10: 141–146.

    CAS  Google Scholar 

  • Soderlund, D. M., and J. R. Bloomquist. 1989. Neurotoxic actions of pyrethroid insecticides. Ann. Rev. Entomol. 34: 77–96.

    CAS  Google Scholar 

  • Soderlund, D. M., J. R. Sanborn, and P. W. Lee. 1983. Metabolism of Pyrethrins and pyrethroids in insects, pp. 401–435. In D. H. Hutson and T. R. Roberts (eds.), Progress in pesticide biochemistry and toxicology, Vol. 3. Wiley, New York.

    Google Scholar 

  • Squires, R. F., J. E. Casida, M. Richardson, and E. Saederup. 1983. [35S>Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol. Pharmacol. 23: 326–336.

    PubMed  CAS  Google Scholar 

  • Sumikawa, K., I. Parker, and R. Miledi. 1984. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels. Proc. Natl. Acad. Sei. USA 81: 7994–7998.

    CAS  Google Scholar 

  • Sun, Y.-P., and E. R. Johnson. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.

    PubMed  CAS  Google Scholar 

  • Talcott, R. E. 1979. Hepatic and extrahepatic malathion carboxylesterases. Assay and localization in the rat. Toxicol. Appl. Pharmacol. 47: 145–150.

    PubMed  CAS  Google Scholar 

  • Tanaka, K. 1987. Mode of action of insecticidal compounds acting at inhibitory synapse. J. Pestic. Sci. 12: 549–560.

    CAS  Google Scholar 

  • Tanaka, K., J. G. Scott, and F. Matsumura. 1984. Picrotoxinin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene-type insecticides. Pestic. Biochem. Physiol. 22: 117–127.

    CAS  Google Scholar 

  • Terriere, L. C. 1983. Enzyme induction, gene amplification, and insect resistance to insecticides, pp. 265–297. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Tsukamoto, M., T. Narahashi, and T. Yamasaki. 1965. Genetic control of low nerve sensitivity to DDT in insecticide-resistant house flies. Botyu-Kagaku 30: 128–132.

    Google Scholar 

  • Vincent, D. R., A. F. Moldenke, and L. C. Terriere. 1983. NADPH-cytochrome P-450 reductase from the house fly, Musca domestica. Improved methods for purification, and reconstitution of aldrin epoxidase activity. Insect Biochem. 13:559–566.

    CAS  Google Scholar 

  • Vincent, D. R., A. F. Moldenke, D. E. Farnsworth, and L. C. Terriere. 1985. Cytochrome P-450 in insects. 6. Age dependency and phénobarbital induction of cytochrome P-450, P-450 reductase, and monooxygenase activities in susceptible and resistant strains of Musca domestica. Pestic. Biochem. Physiol. 23: 171–181.

    CAS  Google Scholar 

  • Wafford, K. A., D. B. Sattelle, I. Abalis, A. T. Eldefrawi, and M. E. Eldefrawi. 1987. γ-Aminobutyric acid-activated 36Cl-influx: a functional in vitro assay for CNS y-aminobutyric acid receptors of insects. J. Neurochem. 48: 177–180.

    PubMed  CAS  Google Scholar 

  • Waters, L. C., and C. E. Nix. 1988. Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster. Pestic. Biochem. Physiol. 30: 214–227.

    CAS  Google Scholar 

  • Waters, L. C., S. I. Simms, and C. E. Nix. 1984. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in Drosophila. Biochem. Biophys. Res. Commun. 123: 907–913.

    PubMed  CAS  Google Scholar 

  • Welling, W., and G. D. Paterson. 1985. Toxicodynamics of insecticides, pp. 603–645. In G. A. Kerkut and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry, and pharmacology, Vol. 12. Pergamon, Oxford.

    Google Scholar 

  • Wheelock, G. D., and J. G. Scott. 1989. Simultaneous purification of a cytochrome P-450 and cytochrome b5 from the house fly, Musca domestica L. Insect Biochem. 19: 481–488.

    CAS  Google Scholar 

  • Wilkinson, C. F. 1983. Role of mixed-function oxidases in insecticide resistance, pp. 175–205. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Wu, C.-F., B. Ganetzky, L. Y. Jan, Y.-N. Jan, and S. Benzer. 1978. A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proc. Natl. Acad. Sci. USA 75: 4047–4051.

    PubMed  CAS  Google Scholar 

  • Yasutomi, K. 1983. Role of detoxication esterases in insecticide resistance, pp. 249–263. In G. P. Georghiou and T. Saito (eds.), Pest resistance to pesticides. Plenum, New York.

    Google Scholar 

  • Yu, S. J., and L. C. Terriere. 1979. Cytochrome P-450 in insects. 1. Differences in the forms present in insecticide resistant and susceptible house flies. Pestic. Biochem. Physiol. 12: 239–248.

    CAS  Google Scholar 

  • Ziegler, R., S. Whyard, A. E. R. Downe, G. R. Wyatt, and V. K. Walker. 1987. General esterase, malathion carboxylesterase, and malathion resistance in Culex tar salis. Pestic. Biochem. Physiol. 28: 279–285.

    CAS  Google Scholar 

Download references

Authors

Editor information

Richard T. Roush Bruce E. Tabashnik

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Soderlund, D.M., Bloomquist, J.R. (1990). Molecular Mechanisms of Insecticide Resistance. In: Roush, R.T., Tabashnik, B.E. (eds) Pesticide Resistance in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6429-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6429-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6431-3

  • Online ISBN: 978-1-4684-6429-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation