Effects of B and S on Ni3Al Grain Boundaries

  • Chapter
Atomistic Simulation of Materials

Abstract

In many materials, the mechanical behavior is controlled by the grain boundary (GB) properties. An extreme example is the ordered alloy Ni3Al, which, as a single crystal, is ductile, while as a pure polycrystal, exhibits severe intergranular brittleness, making it useless as a technological material. However, it has been found [1] that do** Ni3Al that is slightly Ni-rich (76% Ni) with small amounts of boron (~l-2 atomic %) restores the ductility almost to the level of the single crystal. While it is known experimentally that B segregates to grain boundaries [1], the mechanism by which ductilization occurs is not known. We present here results of our initial investigation into the effects of impurities on Ni3Al grain boundaries, using interatomic potentials of the embedded atom [2,3] form, coupled with molecular statics techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C.T. Liu, C.L. White and J.A. Horton, Acta Metall., 33:213 (1985).

    Article  CAS  Google Scholar 

  2. M.S. Daw and M.I. Baskes, Phys. Rev. Lett. 50:1285 (1983); Phys. Rev. B 29:6443 (1984).

    Article  CAS  Google Scholar 

  3. A.F. Voter and S.P. Chen, Mater. Res. Soc. Svmp. Proc. Vol. 82:175 (1987).

    Article  CAS  Google Scholar 

  4. “Grain Boundary Structure and Kinetics”, ed. by R.W. Balluffi, ASM, Metals Park, OH (1980).

    Google Scholar 

  5. A.P. Sutton, Int. Metals Rev. 29:377 (1984).

    CAS  Google Scholar 

  6. S.P. Chen, A.F. Voter, and D.J. Srolovitz, Scripta Met. 20:1389 (1986).

    Article  CAS  Google Scholar 

  7. S.M. Foiles, MRS Proceedings 81:51 (1987).

    Article  CAS  Google Scholar 

  8. J.J. Kruisman, V. Vitek, and J.Th.M. DeHosson, Acta. Met. 36:2729 (1988).

    Article  Google Scholar 

  9. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29:2963 (1984).

    Article  CAS  Google Scholar 

  10. S.M. Foiles, Phys. Rev. B 32:7685 (1985); S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33:7983 (1986).

    Article  CAS  Google Scholar 

  11. J.A. Nelder and R. Mead, Comp J. 7:308 (1965).

    Google Scholar 

  12. O.K. Andersen, Phys. Rev. B 12:3060 (1975); H.L. Skriver, “The LMTO Method: Muffin-Tin Orbitals and Electronic Structure”, Springer-Verlag, Berlin (1984).

    Article  CAS  Google Scholar 

  13. J. Douin, P. Veyssière, and P. Beauchamp, Phil. Mag. A54:375 (1986).

    Google Scholar 

  14. S.P. Chen, A.F. Voter, and D.J. Srolovitz, Phys. Rev. Lett. 57:1308 (1986).

    Article  CAS  Google Scholar 

  15. S.P. Chen, D.J. Srolovitz and A.F. Voter, J. Mater. Res. 4:62 (1989).

    Article  CAS  Google Scholar 

  16. S.P. Chen, A.F. Voter, R.C. Albers, A.M. Boring, and P.J. Hay, Scripta Met., 23:217 (1989).

    Article  CAS  Google Scholar 

  17. J. Hack, D.J. Srolovitz, and S.P. Chen, Scripta Met. 20:1699 (1986).

    Article  CAS  Google Scholar 

  18. V. Vitek, S.P. Chen, A.F. Voter, J.J. Kruisman, and J.Th.M. DeHosson, in: “Grain Boundary Chemistry and Intergranular Fracture”, G.S. Was, ed., Trans. Tech. Publications (1989).

    Google Scholar 

  19. C.L. White, R.A. Padgett, C.T. Liu, and S.M. Yalisov, Scripta Met. 18:1417 (1984).

    Article  CAS  Google Scholar 

  20. S.P. Chen, A.F. Voter, R.C. Albers, A.M. Boring, and P.J. Hay, J. Mater. Res., submitted.

    Google Scholar 

  21. “Embrittlement of Engineering Alloys”, C.L. Briant and S.K. Banerji, eds. Academic Press, New York, NY (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Voter, A.F., Chen, S.P., Albert, R.C., Boring, A.M., Hay, P.J. (1989). Effects of B and S on Ni3Al Grain Boundaries. In: Vitek, V., Srolovitz, D.J. (eds) Atomistic Simulation of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5703-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5703-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5705-6

  • Online ISBN: 978-1-4684-5703-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation