Angular Forces in Transition Metals and Diamond Structure Semiconductors

  • Chapter
Atomistic Simulation of Materials

Abstract

This paper describes the motivation for develo** angular forces in transition metals and semiconductors, and discusses the calculation of such forces and their relation to observed structures. The successes and failures of radial force schemes are first briefly described. Subsequently, existing methods for generating angular forces are discussed, with emphasis on methods based on tight-binding analysis. Plots of the angular potentials are given for model transition metals and semiconductors. The features in the potentials are used to interpret observed bond angles in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. W. Finnis, A. T. Paxton, D. G. Pettifor, A. P. Sutton, and Y. Ohta, Phil. Mag. A58:143(1988).

    Google Scholar 

  2. A. E. Carlsson in: “Solid State Physics: Advances in Research and Applications”, edited by H. Ehrenreich and D. Turnbull, Volume 43, (Academic, New York) (in press).

    Google Scholar 

  3. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50:1285 (1983); Phys. Rev. B 29: 6443 (1984).

    Article  CAS  Google Scholar 

  4. M. W. Finnis and J. M. Sinclair, Phil. Mag. A50:45 (1984); Phil. Mag. A53:161 (1986).

    Google Scholar 

  5. V. Heine and D. Weaire, in: “Solid State Physics: Advances in Research and Applications”, edited by H. Ehrenreich, R. Seitz and D. Turnbull, Volume 35, (Academic, New York, 1970), p. 1.

    Google Scholar 

  6. J. M. Harder and D. J. Bacon, Phil. Mag. A54:641 (1986).

    Google Scholar 

  7. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33:7983 (1986); Phys. Rev. B 37:10378 (1988).

    Article  CAS  Google Scholar 

  8. G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, Phil. Mag. A56:735 (1987).

    Google Scholar 

  9. G. J. Ackland and M. W. Finnis, Phil. Mag. A54:301 (1986).

    Google Scholar 

  10. C. P. Flynn, “Point Defects and Diffusion”, (Clarendon, Oxford, 1972), p. 6.

    Google Scholar 

  11. R. Benedek, J. Phys. F8:1119 (1978).

    Article  Google Scholar 

  12. F. Ducastelle, J. Phys. (Paris) 31:1055 (1970).

    Article  Google Scholar 

  13. Y. Ohta, M. W. Finnis, D. G. Pettifor, and A. P. Sutton, J. Phys. F17:L273 (1987).

    Article  Google Scholar 

  14. S. M. Foiles, Surf. Sci. 191:L779 (1987).

    Article  CAS  Google Scholar 

  15. P. Turchi and F. Ducastelle, in: “The Recursion Method and Its Applications”, edited by D. G. Pettifor and D. L. Weaire, (Springer, New York, 1985), p. 104.

    Google Scholar 

  16. E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller, J. Cryst. Growth 70:33 (1984).

    Article  CAS  Google Scholar 

  17. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31:5262 (1985).

    Article  CAS  Google Scholar 

  18. R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55:2001 (1985).

    Article  CAS  Google Scholar 

  19. R. Biswas and D. R. Hamann, Phys. Rev. B 36:6434 (1987).

    Article  CAS  Google Scholar 

  20. D. W. Brenner and B. J. Garrison, Phys. Rev. B 34:1304 (1986).

    Article  CAS  Google Scholar 

  21. J. Tersoff, Phys. Rev. Lett. 56:632 (1986).

    Article  CAS  Google Scholar 

  22. J. Tersoff. Phys. Rev. B 37:6991 (1988).

    Article  Google Scholar 

  23. M. I. Baskes, Phys. Rev. Lett. 59:2666 (1987).

    Article  CAS  Google Scholar 

  24. B. W. Dodson, Phys. Rev. B 35:2795 (1987).

    Article  CAS  Google Scholar 

  25. K. E. Khow and S. Das Sarma, Phys. Rev. B 38:3318 (1988).

    Article  Google Scholar 

  26. W. A. Harrison, “Electronic Structure and the Properties of Solids”, (W. H. Freeman, San Francisco, 1980), Chapter 7.

    Google Scholar 

  27. M. van Schilfgaarde and W. A. Harrison, Phys. Rev. B 33:2653 (1986).

    Article  Google Scholar 

  28. J. C. Phillips, Phys. Rev. 166:832 (1968).

    Article  CAS  Google Scholar 

  29. R. M. Martin, Phys. Rev. 186:871 (1969).

    Article  CAS  Google Scholar 

  30. Reference 26, Chapter 9.

    Google Scholar 

  31. J. A. Moriarty, Phys. Rev. Lett. 55:1502 (1985).

    Article  CAS  Google Scholar 

  32. J. A. Moriarty, Phys. Rev. B 38:3199 (1988).

    Article  CAS  Google Scholar 

  33. R. J. Harrison, Surf. Sci. 144:215 (1984).

    Article  CAS  Google Scholar 

  34. K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35:7423 (1987).

    Article  CAS  Google Scholar 

  35. C. C. Matthai, P. J. Grout, and N. H. March, J. Phys. Chem. Solids 42:317 (1981).

    Article  CAS  Google Scholar 

  36. F. Cyrot-Lackmann, J. Phys. Chem. Solids 29:1235.

    Google Scholar 

  37. See articles by R. Haydock, (p. 216) and M. J. Kelley (p. 296), in Ref. 5.

    Google Scholar 

  38. E. T. Jaynes, Phys. Rev. 106:620 (1957); Phys. Rev. 108:171 (1957).

    Article  Google Scholar 

  39. R. Collins and A. Wragg, J. Phys. A10:1441 (1977).

    Google Scholar 

  40. L. R. Mead and N. Papanicolaou, J. Math. Phys. 25:2404 (1984).

    Article  Google Scholar 

  41. R. H. Brown and A. E. Carlsson, Phys. Rev. B 32:6125 (1985).

    Article  CAS  Google Scholar 

  42. K. Hirai and J. Kanamori, J. Phys. Soc. Jpn. 50:2265 (1981).

    Article  CAS  Google Scholar 

  43. A. E. Carlsson and N. W. Ashcroft, Phys. Rev. B 27:2101 (1983.

    Article  CAS  Google Scholar 

  44. A. E. Carlsson, Phys. Rev. B 32:4866 (1985).

    Article  CAS  Google Scholar 

  45. F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem Solids 32: 285 (1971).

    Article  CAS  Google Scholar 

  46. V. Heine and J. H. Samson, J. Phys. F10:2609 (1980).

    Article  Google Scholar 

  47. V. Heine and J. H. Samson, J. Phys. F13:2155 (1983).

    Article  Google Scholar 

  48. W. A. Harrison, “Solid State Table of the Elements,” Ref. 26.

    Google Scholar 

  49. J. Donohue, “The Structures of the Elements”, (Wiley, New York, 1974), Chapter 8.

    Google Scholar 

  50. Reference 50, Chapter 9.

    Google Scholar 

  51. In typical calculations (see Ref. 42, for example), the ∂UTB/∂µ4 contribution to the V effn changes sign at Nv ≈ 0.25 and 0.75. In group VI elements Nv < 0.67(=4/6), since not all the electrons reside in the p-band.

    Google Scholar 

  52. F. H. Stillinger, T. A. Weber, and R. A. LaViolette, J. Chem. Phys. 85:6460 (1986).

    Article  CAS  Google Scholar 

  53. F. Ducastelle and F. Cyrot-Lackmann, J. Phys. Chem. Solids, 31:1295 (1970).

    Article  CAS  Google Scholar 

  54. R. B. Phillips and A. E. Carlsson (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Carlsson, A.E. (1989). Angular Forces in Transition Metals and Diamond Structure Semiconductors. In: Vitek, V., Srolovitz, D.J. (eds) Atomistic Simulation of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5703-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5703-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5705-6

  • Online ISBN: 978-1-4684-5703-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation