Molecular Structure and Function of Phospholamban: The Regulatory Protein of Calcium Pump in Cardiac Sarcoplasmic Reticulum

  • Chapter
Calcium Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

The excitation-contraction coupling of the myocardium represents a three-part process, involving three kinds of subcellular systems. These are sarcolemma, sarcoplasmic reticulum (SR), and myofibrillar proteins. Information transfer among these systems is exclusively carried out by Ca ions1 in that both membranes of sarcolemma and SR exhibit bi-directional Ca fluxes, and the myofibrillar system contains Ca receptor protein troponin. It is important to note that all of these three subcellular systems provide phosphorylation sites for protein kinases and, in addition, such phosphorylation reactions are thought to accompany profound alterations in Ca-related events in these systems. Among these, phosphorylation of phospholamban, a membrane protein in cardiac SR, and its functional consequences are extensively defined 2,3, in that phospholamban presumably serves to modulate Ca pump ATPase of SR by augmenting the key elementary steps of ATPase. Phospholamban of cardiac SR was purified to near homogeneity and was sequenced by amino acid and cDNA sequencing, demonstrating a unique molecular properties. This paper defines the functional and structural characteristics of the phospholamban-ATPase system and attemps to propose a molecular model for the functional unit of phospholamban, which provides a basic understanding for the regulatory mechanism of ion transport and bioenergetic transduction across biomembrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Tada, T. Yamamoto, and Y. Tonomura, Molecular mechanism of active calcium transport by sarcoplasmic reticulum, Physiol. Rev. 58:1 (1978)

    PubMed  CAS  Google Scholar 

  2. M. Tada and A. M. Katz, Phosphorylation of the sarcoplasmic reticulum and sarcolemma, Annu. Rev. Physiol. 44:401 (1982)

    Article  PubMed  CAS  Google Scholar 

  3. M. Tada, M. Yamada, M. Kadoma, M. Inui, and F. Ohmori, Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban, Mol. Cell. Biochem. 46:73 (1982)

    Article  PubMed  Google Scholar 

  4. M. Tada, M. A. Kirchberger, D. I. Repke, and A. M. Katz, The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′: 5′-monophosphate-dependent protein kinase, J. Biol. Chem. 249:6174 (1974)

    PubMed  CAS  Google Scholar 

  5. M. A. Kirchberger, M. Tada, and A. M. Katz, Adenosine 3′:5′-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249:6166 (1974)

    PubMed  CAS  Google Scholar 

  6. M. Tada, F. Ohmori, M. Yamada, and H. Abe, Mechanism of the stimulation of Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase, J. Biol. Chem. 254:319 (1979)

    PubMed  CAS  Google Scholar 

  7. M. Tada, M. Yamada, F. Ohmori, T. Kuzuya, M. Inui, and H. Abe, Transient state kinetic studies of Ca2+-dependent ATPase and calcium transport by cardiac sarcoplasmic reticulum, J. Biol. Chem. 255:1985 (1980)

    PubMed  CAS  Google Scholar 

  8. E. G. Kranias, F. Mandel, T. Wang, and A. Schwartz, Mechanism of the stimulation of calcium ion dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′’5′-monophosphate dependent protein kinase, Biochemistry 19:5434 (1980)

    Article  PubMed  CAS  Google Scholar 

  9. M. Inui, M. Kadoma, and M. Tada, Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum, J. Biol. Chem. 260:3708 (1985)

    PubMed  CAS  Google Scholar 

  10. L. R. Jones, H. K. B. Simmerman, W. W. Wilson, F. R. N. Gurd, and A. D. Wegener, Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum, J. Biol. Chem. 260:7721 (1985)

    PubMed  CAS  Google Scholar 

  11. T. Suzuki and J. H. Wang, The phosphorylation of purified phospholamban by cyclic AMP-dependent protein kinase is stimulated by phosphatidylinositol, J. Biol. Chem. 262:3880 (1987)

    PubMed  CAS  Google Scholar 

  12. G. Jakab and E. G. Kranias, Phosphorylation and dephosphorylation of purified phospholamban and associated phosphatidylinositides, Biochemistry 27:3799 (1988)

    Article  PubMed  CAS  Google Scholar 

  13. M. Tada, M. A. Kirchberger, and A. M. Katz, Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′,-monophosphate-dependent protein kinase, J. Biol. Chem. 250:2640 (1975)

    PubMed  CAS  Google Scholar 

  14. J. Fujii, M. Kadoma, M. Tada, M. Toda, and F. Sakiyama, Characterization of structural unit of phospholamban by amino acid sequencing and electrophoretic analysis, Biochem. Biophys. Res. Commun. 138:1044 (1986)

    Article  PubMed  CAS  Google Scholar 

  15. A. D. Wegener and L. R. Jones, Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels, J. Biol. Chem. 259:1834 (1984)

    PubMed  CAS  Google Scholar 

  16. T. Imagawa, T. Watanabe, and T. Nakamura, Subunit structure and multiple phosphorylation sites of phospholamban, J. Biochem. (Tokyo) 99:41 (1986)

    CAS  Google Scholar 

  17. T. Takagi, Determination of protein molecular’ weight by gel permeation chromatography equipped with low-angle laser light scattering photometer, Progress in HPLC 1:27 (1985)

    CAS  Google Scholar 

  18. J. Fujii, A. Ueno, K. Kitano, S. Tanaka, M. Kadoma, and M. Tada, Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban, J. Clin. Invest., 79:301 (1987)

    Article  PubMed  CAS  Google Scholar 

  19. H. K. B. Simmerman, J. H. Collins, J. L. Theibert, A. D. Wegener, and L. R. Jones, Sequence analysis of phospholamban: Identification of phosphorylation sites and two major structural domains, J. Biol. Chem. 261:13333 (1986)

    PubMed  CAS  Google Scholar 

  20. M. Tada, M. Kadoma, M. Inui, and J. Fujii, Regulation of Ca2+-pump from cardiac sarcoplasmic reticulum, Methods Enzymol. 157:107 (1988)

    Article  PubMed  CAS  Google Scholar 

  21. A. D. Wegener, H. K. B. Simmerman, J. Liepnieks, and L. R. Jones, Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles, J. Biol. Chem. 261:5154 (1986)

    PubMed  CAS  Google Scholar 

  22. D. H. MacLennan, C. J. Brandi, B. Korczak, and N. M. Green, Calcium ATPases: Contribution of molecular genetics to our understanding of structure and function, in: “Proteins of Excitable Membranes, Society of General Physiologists Series” 41:287, B. Hille and D. M. Fambrough, eds, Raven Press, New York (1987)

    Google Scholar 

  23. T. Suzuki and J. H. Wang, Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+-pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody, J. Biol. Chem. 261:7018 (1986)

    PubMed  CAS  Google Scholar 

  24. M. Tada and M. Inui, Regulation of Calcium transport by the ATPase-phospholamban system, J. Mol. Cell. Cardiol. 15:565 (1983)

    Article  PubMed  CAS  Google Scholar 

  25. W. Osterrieder, G. Brum, J. Hescheler, W. Trautwein, V. Flockerzi, and F. Hofmann, Injection of subunuits of cyclic AMP-dependent protein kinase into cardiac myocytes modurates Ca2+-current, Nature 298:576 (1982)

    Article  PubMed  CAS  Google Scholar 

  26. Y. Iwasa and M. M. Hosey, Cholinergic antagonism of 3-adrenergic stimulation of cardiac membrane phosphorylation in situ, J. Biol. Chem. 258:4571 (1983)

    PubMed  CAS  Google Scholar 

  27. C. J. Le Peuch, J.-C. Guilleux, and J.G. Demaille, Phospholamban phosphorylation in the perfused rat heart is not solely dependent on ß-adrenergic stimulation, FEBS Lett. 114:165 (1980)

    Article  PubMed  Google Scholar 

  28. J. P. Lindemann, L. R. Jones, D. R. Hathaway, B. G. Henry, and A. M. Watanabe, ß-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles, J. Biol. Chem. 258:464 (1983)

    PubMed  CAS  Google Scholar 

  29. A. Fabiato and F. Fabiato, Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells, Nature 253:556 (1975)

    Article  PubMed  CAS  Google Scholar 

  30. D. G. Allen and J. R. Blinks, Calcium transients in equorin-injected frog cardiac muscle, Nature 273:509 (1978)

    Article  PubMed  CAS  Google Scholar 

  31. D. H. MacLennan, C. J. Brandi, B. Korczak, and N. M. Green, Amino-acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature 316:696 (1985)

    Article  PubMed  CAS  Google Scholar 

  32. C. J. Brandi, N. M. Green, B. Korczak, and D. H. MacLennan, Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences, Cell 44:597 (1986)

    Article  CAS  Google Scholar 

  33. M. A. Kirchberger and M. Tada, Effects of adenosine 3′:5′-monophosphate-dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles, J. Biol. Chem. 251:725 (1976)

    PubMed  CAS  Google Scholar 

  34. A. O. Jorgensen and L. R. Jones, Localization of phospholamban in slow but not fast canine skeletal muscle fibers, J. Biol. Chem. 261:3775 (1986)

    PubMed  CAS  Google Scholar 

  35. J. Fujii, J. Lytton, M. Tada, and D. H. MacLennan, Rabbit cardiac and slow-twitch muscle express the same phospholamban gene, FEBS Lett. 227:51 (1988)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Tada, M., Kadoma, M., Fujii, J., Kimura, Y., Kijima, Y. (1989). Molecular Structure and Function of Phospholamban: The Regulatory Protein of Calcium Pump in Cardiac Sarcoplasmic Reticulum. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation