Inositol Phosphate Metabolism and Cellular Signal Transduction

  • Chapter
Calcium Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

Over thirty years have now past since the original report by Hokin and Hokin of receptor-stimulated turnover of inositol lipids1. Today, the impact of this phenomenon on a multitude of important biological systems is widely appreciated. Since the first papers by the Hokins, the phosphoinositides have enjoyed periods of interest, neglect, controversy and finally acceptance as important precursors for biological signals in a variety of systems. The important contributions which lead to our current understanding of this system came from a number of different laboratories. Micheli’s2 hypothesis that the phosphoinositides somehow served to couple receptors to cellular calcium mobilization provoked considerable research and criticism. Progress in understanding the exact role of inositol lipid turnover in receptor mechanisms was hindered by lack of knowledge of the biochemical pathways involved. By the early 1980’s the experimental evidence began to indicate that the initial reaction in stimulated phosphoinositide turnover was the breakdown of not the major known inositide, phosphatidyl inositol, but rather a minor phosphorylated derivative, phosphatidylinositol 4,5-bisphosphate3,4. Berridge5 suggested that the water soluble product of this reaction, inositol 1,4,5-trisphosphate [(1,4,5)IP3], might act as a second messenger to activate the release of Ca2+ from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hokin, M.R., and L.E. Hokin, Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices, J. Biol. Chem. 203:967 (1953).

    PubMed  CAS  Google Scholar 

  2. Micheli, R.H., Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81 (1975).

    Google Scholar 

  3. Abdel-Latif, A.A., R. Akhtar, and J.N. Hawthorne, Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with [32P]phosphate, Biochem. J. 162:61 (1977).

    PubMed  CAS  Google Scholar 

  4. Kirk, C.J., J.A. Creba, C.P. Downes, and R.H. Micheli, Hormone-stimulated metabolism of inositol lipids and its relationship to hepatic receptor function, Biochem. Soc. Trans. 9:377 (1981).

    PubMed  CAS  Google Scholar 

  5. Berridge, M.J., Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphat-idylinositol, Biochem. J. 212:849 (1983).

    PubMed  CAS  Google Scholar 

  6. Streb, H., R.F. Irvine, M.J. Berridge, and I. Schulz, Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-l,4,5-trisphosphate, Nature 306:67 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. Berridge, M.J., Inositol phosphates as second messengers, in: Phosphoinositides and Receptor Mechanisms, Putney, J.W., Jr., ed., p. 25–46, Alan R. Liss, Inc., New York (1986).

    Google Scholar 

  8. Berridge, M.J., R.M. Dawson, C.P. Downes, J.P. Heslop, and R.F. Irvine, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J. 212:473 (1983).

    PubMed  CAS  Google Scholar 

  9. Majerus, P.W., T.M. Connolly, V.S. Bansal, R.C. Inhorn, T.S. Ross, and D.L. Lips, Inositol phosphates: Synthesis and degradation, J. Biol. Chem. 263:3051 (1988).

    PubMed  CAS  Google Scholar 

  10. Putney, J.W., Jr., Calcium-mobilizing receptors, Trends Pharmacol. Sci. 8:481 (1987).

    Article  CAS  Google Scholar 

  11. Downes, C.P., M.C. Mussat, and R.H. Micheli, The inositol trisphos-phate Phosphomonoesterase of the human erythrocyte membrane, Biochem. J. 203:169 (1982).

    PubMed  CAS  Google Scholar 

  12. Inhorn, R.C., V.S. Bansal, and P.W. Majerus, Pathway for 1,3,4-tris-phosphate and 1,4-bisphosphate metabolism, Proc. Nat. Acad. Sci. USA 84:2170 (1987).

    Article  PubMed  Google Scholar 

  13. Irvine, R.F., A.J. Letcher, J.P. Heslop, and M.J. Berridge, The inositol tris/tetrakisphosphate pathway — demonstration of Ins(l,4,5)P3 3-kinase activity in animal tissues, Nature 320:631 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. Bansal, V.S., R.C. Inhorn, and P.W. Majerus, The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate, J. Biol. Chem. 262:9444 (1987).

    PubMed  CAS  Google Scholar 

  15. Irvine, R.F., and R.M. Moor, Micro-injection of inositol 1,3,4,5-tet-rakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+, Biochem. J. 240:917 (1986).

    PubMed  CAS  Google Scholar 

  16. Morris, A.P., D.V. Gallacher, R.F. Irvine, and O.H. Petersen, Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels, Nature 330:653 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. Horstman, D.A., H. Takemura, and J.W. Putney, Jr., Formation and metabolism of [3H]inositol phosphates in AR42J pancreatoma cells: Substance P-induced Ca2+ mobilization in the apparent absence of inositol 1,4,5-trisphosphate 3-kinase activity, J. Biol. Chem. in press.

    Google Scholar 

  18. Wilson, D.B., T.E. Bross, S.L. Hofmann, and P.W. Majerus, Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes, J. Biol. Chem. 259:11718 (1984).

    PubMed  CAS  Google Scholar 

  19. Wilson, D.B., T.E. Bross, W.R. Sherman, R.A. Berger, and P.W. Majerus, Inositol cyclic phosphates are produced by cleavage of phosphatidylphosphoinositols (polyphosphoinositides) with purified sheep seminal vesicle phospholipase C enzymes, Proc. Nat. Acad. Sci. USA 82:4013 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. Wilson, D.B., T.M. Connolly, T.E. Bross, P.W. Majerus, W.R. Sherman, A.N. Tyler, L.J. Rubin, and J.E. Brown, Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. Physiological effects in permeabilized platelets and Limulus photoreceptor cells, J. Biol. Chem. 260:13496 (1985).

    PubMed  CAS  Google Scholar 

  21. Irvine, R.F., A.J. Letcher, D.J. Lander, and M.J. Berridge, Specificity of inositol phosphate-stimulated Ca2+ mobilization from Swiss-mouse 3T3 cells, Biochem. J. 240:301 (1986).

    PubMed  CAS  Google Scholar 

  22. Connolly, T.M., D.B. Wilson, T.E. Bross, and P.W. Majerus, Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. Metabolism in cell-free extracts, J. Biol. Chem. 261:122 (1986).

    PubMed  CAS  Google Scholar 

  23. Connolly, T.M., V.S. Bansal, T.E. Bross, R.F. Irvine, and P.W. Majerus, The metabolism of tris-and tetraphosphates of inositol by 5-Phosphomonoesterase and 3-kinase enzymes, J. Biol. Chem. 262:2146 (1987).

    PubMed  CAS  Google Scholar 

  24. Ishii, H., T.M. Connolly, T.E. Bross, and P.W. Majerus, Inositol cyclic trisphosphate (inositol l:2-cyclic 4,5-trisphosphate) is formed upon thrombin stimulation of human platelets, Proc. Nat. Acad. Sci. USA 83:6397 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. Tarver, A.P., W.G. King, and S.E. Rittenhouse, Inositol 1,4,5-trisphosphate and inositol 1,2-cyclic 4,5-trisphosphate are minor components of total mass of inositol trisphosphate in thrombin-stimulated platelets, J. Biol. Chem. 262:17268 (1987).

    PubMed  CAS  Google Scholar 

  26. Dixon, J.F., and L.E. Hokin, Inositol 1,2-cyclic 4,5-trisphosphate concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium. Possible role as a second messenger in long-but not short-term responses, J. Biol. Chem. 262:13892 (1987).

    PubMed  CAS  Google Scholar 

  27. Sekar, M.C., J.F. Dixon, and L.E. Hokin, The formation of inositol 1,2-cyclic 4,5-trisphosphate and inositol 1,2-cyclic 4-bisphos-phate on stimulation of mouse pancreatic minilobules with carbamylchol ine, J. Biol. Chem. 262:340 (1987).

    PubMed  CAS  Google Scholar 

  28. Dixon, J.F., and L.E. Hokin, Inositol 1,2-cyclic 4,5-trisphosphate is formed in the rat parotid gland on muscarinic stimulation, Biochem. Biophys. Res. Comm. 149:1208 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Hughes, A.R., H. Takemura, and J.W. Putney,Jr., Kinetics of inositol 1,4,5-trisphosphate and inositol cyclic 1:2,4,5-trisphosphate metabolism in intact rat parotid acinar cells: Relationship to calcium signalling, J. Biol. Chem. 263:10314 (1988).

    PubMed  CAS  Google Scholar 

  30. Aub, D.L., and J.W. Putney, Jr., Metabolism of inositol phosphates in parotid cells: implications for the pathway of the phosphoinositide effect and for the possible messenger role of inositol trisphosphate, Life Sciences 34:1347 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. Merritt, J.E., and T.J. Rink, Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells, J. Biol. Chem. 262: 17362 (1987).

    PubMed  CAS  Google Scholar 

  32. Merritt, J.E., and T.J. Rink, The Effects of substance P and carbachol on inositol tris-and titrakisphosphate formation and cytosolic free calcium in rat parotid acinar cells. A correlation between inositol phosphate levels and calcium entry, J. Biol. Chem. 262:14912 (1987).

    PubMed  CAS  Google Scholar 

  33. Aub, D.L., and J.W. Putney, Jr., Mobilization of intracellular calcium by methacholine and inositol 1,4,5-trisphosphate in rat parotid acinar cells, J. Dent. Res. 66:547 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. Heslop, J.P., R.F. Irvine, A.H. Tashjian, and M.J. Berridge, Inositol tetrakis-and pentakisphosphates in GH4 cells, J. Exp. Biol. 119:395 (1985).

    PubMed  CAS  Google Scholar 

  35. Putney, J.W., Jr., A model for receptor-regulated calcium entry, Cell Calcium 7:1 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. Berridge, M.J., and J.N. Fain, Inhibition of phosphatidyl inositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine, Biochem. J. 178:59 (1979).

    PubMed  CAS  Google Scholar 

  37. Slack, B.E., J.E. Bell, and D.J. Benos, Inositol 1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs, Am. J. Physiol. 250:C340 (1986).

    Google Scholar 

  38. Irvine, R.F., and R.M. Moor, Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate, Biochem. Biophvs. Res. Comm. 146:284 (1987).

    Article  CAS  Google Scholar 

  39. Delfert, D.M., S. Hill, H.A. Pershadsingh, and W.R. Sherman, mvo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes, Biochem. J. 236:37 (1986).

    PubMed  CAS  Google Scholar 

  40. Ueda, T., S.H. Church, M.W. Noel, and D.L. Gill, Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line, J. Biol. Chem. 261:3184 (1986).

    PubMed  CAS  Google Scholar 

  41. Aub, D.L., J.S. McKinney, and J.W. Putney, Jr. Nature of the receptor-regulated calcium pool in the rat parotid gland, J. Physiol. (Lond.) 331:557 (1982).

    CAS  Google Scholar 

  42. Takemura, H., and J.W. Putney, Jr., Capacitative calcium entry in parotid acinar cells, Nature, submitted.

    Google Scholar 

  43. Grynkiewicz, G., M. Poenie, and R.Y. Tsien, A new generation of Ca2+ indicators with indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Putney, J.W., Hughes, A.R., Horstman, D.A., Takemura, H. (1989). Inositol Phosphate Metabolism and Cellular Signal Transduction. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation