Molecular Properties of Voltage-Sensitive Calcium Channels

  • Chapter
Calcium Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 255))

Abstract

Voltage sensitive calcium channels participate in action potential generation in electrically excitable cells and constitute an essential link between transient changes in membrane potential and a variety of cellular responses including secretion of neurotransmitters and hormones, initiation of contraction in cardiac and smooth muscle, and activation of second messenger responses in many cell types. Electrophysiological measurements have established the existence of multiple classes of calcium channels.1–4 Although work on many cell systems has contributed to current understanding of calcium channel function, the molecular properties of the channel have been investigated most thoroughly in skeletal muscle which has a particularly high density of calcium channels. This chapter will therefore focus primarily on skeletal muscle calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Hagiwara and L. Byerly, Calcium channel, Ann. Rev. Neurosci. 4:69 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. C. M. Armstrong and D. R. Matteson, Two distinct populations of calcium channels in a clonal line of pituitary cells, Science 227:65 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. E. Carbone and H. D. Lux, A low voltage-activated fully inactivating calcium channel in vertebrate sensory neurones, Nature 310:501 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. M.C. Nowycky, A. P. Fox, and R. W. Tsien, Three types of neuronal calcium channel with different calcium agonist sensitivity, Nature 316:440 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. J. Sanchez and E. Stefani, Inward calcium current in twitch muscle fibers of the frog, J. Physiol. (Lond.) 283:197 (1978).

    CAS  Google Scholar 

  6. W. Aimers, E. McCleskey, and P. Palade, in “Calcium in Biological Systems” R. P. Rubin, G. B. Weiss, J. W. Putney, Jr. eds., Plenum Press, New York, London, pp. 321–330 (1985).

    Chapter  Google Scholar 

  7. G. Cota and E. Stefani, A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume), J. Physiol. 370:151 (1986).

    PubMed  CAS  Google Scholar 

  8. C. Cognard, M. Lazdunski, and G. Romey, Different types of Ca2+ channels in mammalian skeletal muscle cells in culture, Proc. Natl. Acad. Sci. USA 83:517 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. H. Glossmann, D. R. Ferry, and C. B. Boschek, Purification of the putative calcium channel from skeletal muscle with the aid of [3H]-nimodipine binding, Naunyn-Schmiedeberg’s Arch. Pharmacol. 323:1 (1983).

    Article  CAS  Google Scholar 

  10. M. Fosset, E. Jaimovich, E. Delpont, and M. Lazdunski, [3H] nitrendipine receptors in skeletal muscle. Properties and preferential localization in transverse tubules, J. Biol. Chem. 258:6086 (1983).

    PubMed  CAS  Google Scholar 

  11. H. Glossmann, R. Ferry, A. Goll, J. Striessnig, and M. Schober, Calcium channels: Basic properties as revealed by radioligand binding studies, J. Cardio. Pharmacol. 7:520(1985).

    Article  Google Scholar 

  12. J. Galizzi, M. Borsotto, J. Barhanin, M. Fosset, and M. Lazdunski, Characterization and photoaffinity labeling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (+)-bepridil, desmethoxyverapamil and (+)PN200-110 in skeletal muscle transverse tubule membranes, J. Biol. Chem. 261:1393 (1986).

    PubMed  CAS  Google Scholar 

  13. D. Ferry, M. Rombusch, A. Goll, and H. Glossmann, Photoaffinity labelling of Ca2+ channels with [3H]azidopine, FEBS Lett. 169:112 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. J. Striessnig, H.-G. Knaus, M. Grabner, K. Moosburger, W. Seitz, H. Lietz, and H. Glossmann, Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse tubule calcium channel, FEBS Lett. 212:247 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. B. M. Curtis and W. A. Catterall, Solubilization of the calcium antagonist receptor from rat brain, J. Biol. Chem. 258:7280 (1983).

    PubMed  CAS  Google Scholar 

  16. B. M. Curtis and W. A. Catterall, Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules, Biochemistry 23:2113 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. M. Takahashi, M. Seagar, J. Jones, B.F.X. Reber, and W. A. Catterall, Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle, Proc. Natl. Acad. Sci. USA 84:5478 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. A. Leung, T. Imagawa, and K. Campbell, Structural characterization of the 1,4 dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle, J. Biol. Chem. 262:7943 (1987).

    PubMed  CAS  Google Scholar 

  19. A. H. Sharp, T. Imagawa, A. T. Leung, and K. P. Campbell, Identification and characterization of the dihydropyridine binding subunit of the skeletal muscle dihydropyridine receptor, J. Biol. Chem. 262:12309 (1987).

    PubMed  CAS  Google Scholar 

  20. M. E. Morton and S. C. Froehner, Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel, J. Biol. Chem. 262:11904(1987).

    PubMed  CAS  Google Scholar 

  21. P. L. Vaghy, J. Streissnig, K. Miwa, H.-G. Knaus, K. Itagaki, E. McKenna, H. Glossmann, and A. Schwartz, Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations, J. Biol. Chem 262:14337 (1987).

    PubMed  CAS  Google Scholar 

  22. W. A. Catterall, Molecular properties of voltage-sensitive sodium channels, Ann. Rev. Biochem. 55:953 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. A. Goldin, T. Smith, H. Lubbert, A. Dowsett, J. Marshall, V. Auld, W. Downey, L. C. Fritz, H. A. Lester, R. Dunn, W. A. Catterall, and N. Davidson, Messenger RNA coding for only the a subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 83:7503 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. M. Noda, T. Ikeda, T. Suzuki, H. Takeshima, Takahashi M., M. Kuno, and S. Numa, Expression of functional sodium channels from cloned cDNA, Nature 32:826 (1986).

    Article  Google Scholar 

  25. J. Barhanin, T. Coppola, A. Schmid, M. Borsotto, and M. Lazdunski, The calcium channel antagonists receptor form rabbit skeletal muscle. Reconstitution after purification and subunit characterization, Eur. J. Biochem. 164:525 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. B. M. Curtis and W. A. Catterall, Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules, Biochemistry 25:3077 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. V. Flockerzi, H.-J. Oeken, F. Hofmann, D. Pelzer, A. Cavalie, and W. Trautwein, Purified dihydropyridine binding site from skeletal muscle T-tubules in a functional calcium channel, Nature (Lond.) 323:66 (1986).

    Article  CAS  Google Scholar 

  28. J. Striessnig, A. Goll, K. Moosburger, and H. Glossmann, Purified calcium channels have three allosterically coupled drug receptors, FEBS Lett. 197:204 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. M. Schramm, G. Thomas, R. Towart, and G. Franckowiak, Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels, Nature 303:535 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. H. Reuter, Properties of two inward membrane currents in the heart. Ann. Rev. Physiol. 41:413 (1974).

    Article  Google Scholar 

  31. R. Tsien, B. Bean, P. Hess, J. Lansman, B. Nilius, and M. Nowycky, Mechanisms of calcium channel modulation by ß-adrenergic agents and dihydropyridine calcium agonists, J. Mol. Cell Cardiol. 18:691 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. G. Brum, V. Flockerzi, F. Hofmann, W. Osterrieder, and W. Trautwein, Injection of catalytic subunit of cAMP-dependent protein kinase into isolated cardiac myocytes, Pflugers Archiv. 398:147 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. J. Arreola, J. Calvo, M. C. Garcia, and J. A. Sanchez, Modulation of calcium channels of twitch skeletal muscle of the frog by adrenaline and cyclic adenosine monophosphate fibres, J. Physiol. (Lond.) 393:307 (1987).

    PubMed  CAS  Google Scholar 

  34. B. M. Curtis and W. A. Catterall, Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 82:2528(1985).

    Article  PubMed  CAS  Google Scholar 

  35. T. Tanabe, H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K. Kanagawa, M. Kojima, H. Matsuo, T. Hirose, S. Numa, Primary structure of dihydropyridine binding calcium channel from rabbit skeletal muscle, Nature 328:313 (1987).

    Article  PubMed  CAS  Google Scholar 

  36. M. Noda, T. Ikeda, T. Kayano, H. Suzuki, H. Takeshima, M. Kurasaki, H. Takahashi, and S. Numa, Existence of distinct sodium channel messenger RNAs in rat brain, Nature 320:188 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Catterall, W.A., Seagar, M.J., Takahashi, M., Nunoki, K. (1989). Molecular Properties of Voltage-Sensitive Calcium Channels. In: Hidaka, H., Carafoli, E., Means, A.R., Tanaka, T. (eds) Calcium Protein Signaling. Advances in Experimental Medicine and Biology, vol 255. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5679-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5679-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5681-3

  • Online ISBN: 978-1-4684-5679-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation